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All ITERATIVE TR.4NSFOR3XATION PROCEDURE FOR JNUMERICAL SOLUTION OF FLUTTER
AND SLTIILAR CHARACTERISTIC-VALUE PROBLEMS 1

By Mrsox L. GOSSAED

suggested by H.
li-irkndt for numerical ddion of flutter and similar charac-
t(rbtkrahie probkms is prwnt~d. .App[ication of this pro-
cedurf to ordinaq natural+ibratiun probiem~ and to $utter
probkms ix A#LtlUVI by nurnerica~exa?np~es. Compari80n8 of
c,miputed rew[t~ with expem”mentalralue% and with r~$uit$
oh ined by other metlwdsof analy~iaare made.

INTRODUCTION

Exist ing methods of flutter mmlysis include the
r~prewn ttit ive-section method, genemlized-~ordinate meth-
{11Is, mat rix methock, and operational methods, The present.
report presents an iteration procedure for analysis of
flutter and similar characteristic-value probIems.

For ordinary ntitural-~ibration problems, iterative pro-
wdures of tht~ Stodola type (references I and 2) are suitable
for finding the fundamental and higher-order natural modes
aml frequencies. The higher-order solutio~ are obtained
through use of the orthogonality relations that exist amo~u
the natural modes.

Ort hogonaIity relations analogous to those that exist in
{}rdinary Vibration problems can bc found in the flutter
problem onIy by introduction of the so-caIIed “adjoint”
problem. (This additional step is unnecessary in ordinary
vibration problems by virtue of the fact that they are
“self-adjoint. ”) Wiekmdt has suggested an iterative trans-
f(mnation procedure (reference 3) which is -well-suited to
the flutter proldem in that it avoids the need of orthogo-
mdity relations and hence does not require consideration of
the adjoint problem. The iteratire transformation pro-
wdure can also be appIied to ordinary natural-vibration
problems with less labor than is generalIy required in the
extended Stodola procedure.

Because both the original and translated viorks of
\VieIandt are difficult to follow, an espkmation of the idea
~]f the iterative transformation procedure is given in the
present report and the application of the procedure to
ordinary natural-vibration problems and to flexure-to=ion
flutter problems is shown in numerical exampks. Com-
parisons of computed resuk with experimental dues and
with results obtained by other methods of analysis are
also made.
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SYMBOLS

fL2xuraI stiffness
torsional stifTness
spanwise coordinate with origin at. root of Jving
complex represent ation of amplitudes and phwes

of trtudation of elastic axis in harmonic motion
complex representation of amplitudes rind phases

of rotation about elastic axis in harmonic motion
coupkd mode (y,@)
complex coeffirieuts of y which, when muh iplied

by y, give complex representation of amplitudes
and phases of aerod~mamic and inertia forces
associated with trandational component of
harmonic motion

compIex coefficients of # which, when multiplied
by +, give compIex representation of amplitudes
and phases of aerodynamic and inertia forcw
associated with rotational component of Lar-
monic motion

compk coeflkiwts of y which, when multiplied
by y, give complex representation of amplitudes
and phases of aerodynamic and inertia torques
associated with trandationd component of har-
monic mot ion

complex coefficients of @ which, when nmItiplied
by +, gi~e compIex representation of amplitudes
and phases of aerodynamic and inertia torques
associated with rotat ionaI component of har-
monic motion

st.ructura~damping coefficients associated with
ffexure and torsion, respecti~eIy (see appendL.. B)

coefficient of artificial damping (may be either
positive or negative)

reduced frequency (ha/o)
frequency of harmonic motion

()

1-Fig.
characteristic due — d

length of semichord of wing
length of cantiIe~er wing from root to tip
mass ratio (7/rpb9
velocity of air reIative to wing
distributed mass of wing per unit Iength of span
mass density of air

1SuWrwies XAC.4 TX 23%, “An Itemtl~eTransmrmdon Procedurefor Xnmerlcd Wutkm of PIuttcrend Shn[larCWacterls.sId%Iue Prohldms”by Myron L @esard, 1951.
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distance between midchord &~is and elasLic axis
in terms of locaI semichord, positive when
elastic axis is behind midchord axis

distanco I.Mween elastic axis and gravity axis of dis-
tributed mass of wing in terms of locaI sernichord,
positive when gravity a.ti is behind elastic axis

radius of gyra,tion of distributed mass of wing
about elmt ic ask in terms of Iocal semichord

transcendenhd functions of k (see reference 4)
time

eigenwdue factor ()
g–~

n
ratio of compIex constan te
length; in numerical solutions, distauc.e between

spwific adjacent stations of wing
applied force
applied torque
shear
bending moment
curvature
sIopc of elastic rmis
twisthlg
angle of

,Stibscrip ts:
1,2,3, . . ,
~~,@j:&$ . . ,

b
A, B,(?, . . .
R
I
()
bl,ba2,ba3, . . .
Superscripts:
(1),~2), @), . . .

moment
twist

true modes or cigenvalues
transformed modes
intermediate de.rived mode
stations
real
im~~inary
reference Vrduo
sweeping functions

cycles of iteration

A bar over a symbol indicates a concentrated quantity
instwd of a distributed quantity.

A prime is used to denote division by cF.

ITERATIVE TRANSFORMATION METHOD OF SOLUTION

GENERAL FEATURE9 OF METHOD

The principle of tho it.erat.ivo transformation procedure is
simihw in form to that of the standard iteration procedure
for solving characteristic-value problems, Both procedures
require the determination of tb e solutions in the order of the
magnitudes of the oigenvalues, beginning witJ~ the funda-
mental. Both procedures require assumptions of modes,
integrations which generalIy must be done numerically, and
sweeping operations for higher-order-mode determinations.
The distinguishing features of the iterative trausforrnation
procedure occur in the determination of solutions higher than
the fundamental and are as follows: (1) The immediate aim
is to determine not the true nth mode, as in the sLandard
iteration procedure, but a particular linear combination
composed of all modes from the fundamental to the 7~th,

!f’his linear combination is referred to as the t.mnsformed nth

mode, The transformed nth mode can h made to have
nodal (zero) points at specified stat.iom of t.lm wing; such a
feature is highly desirable in numerical work, (2) The
sweeping operations, which consist of subtractions of lower-
order-mode shapes from the function obtained by integra tiug
tho assumed mode, do not employ the orthogondity rclat.ions
as in the standard iteration method but make use of forcing
functions that, in numerical work, grently simplify the
sweeping operations and increase the over-all accuracy of the
resuIts by making the sweeping operations more consistent
with the resL of the process, (3) AILhough the true nth,
eigenvrduc is determined directly in the iterative transforma-
tion procedure, the true nth mode must be computed from
quantities withiu the iteration cycle after the transformed
nth mode is found.

OUTLINE OF STEPS IN THE PROCEDURE

The equation of equilibrium of a cantilever beam vibrating
harmonically in pure flexure is

(1)

or, after integration with proper aUention tu boundary
conditions,

‘=JYHW”2’’”” (2)

The soIutions of this iutegral equation aro the true naturaI
modes (eigenfunctions) yl, YZ,ya, . . . d tho corresponding
naturaI frequencies (eigenvahles) w, *, @aj . . . . For
convenience in subsequent discussion, Lho truo modes arc
assumed to be norndizcd to unity at somo position (station
A) along the beam.

The first mode and frequcney are assumed to have been
previously determined by the Stodola process. The iterative
transformation procedure hecomcs applicabIo in the dcM-
rnination of the second mode and frequency, As mentioned
previously, the immediate aim in the it.cratiou for thu sccold
mode is the Germination of a Iinear combination of fmt
and second modes which is called the transformed second
mode. The linear combination Y,–YI which has zero
ordinat a at Sttit ion f~ is chosen and defh?d as the traneformwi
second rnocle to be dctwmined. The ihwtion for determina-
tion of this transformed second mode may be described as
foIIows :

(1) Aplausiblc shape ye (lJfor the transformed second rnodc
is assumed, Tl& shape must have zero ordinato at station
A and should satisfy the boundary conditions as closely as
possible.

(2) The dispIaccmont

resulting from the inertia load ~~~dI1~ corresponding to the
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assumed shape ye ‘1) -i-ibrmting harmotidy at frequency *
is calculated. This calculation must usually be done
numerically with the square of the frequency CJ being
mmried along as an undetermined factor.

(3] A first-mode shape (pretiousIy determined) is sub-
tracted (swept out) from the calculated displacement ~b in
an amount such that the resulting displacement is zero at
station A. Thus the resulting displacement is

(’4) The resulting displacement y~w is compared -with the
assumed displacement y~(l). When the computations are
numeriral, the ratios yti(a/y~tl) are compared at all the sta-
tions. If the assumed &placement is exactly equal to the
transformed second mode, the ratios are equal to each other.
Thwe ratios contain the single unkmwn w,, and the second
frequency is that ~alue of U3 which makes the ratios unity.

(5) If the ratios yaca~y~ “~ from the first. cycle of iteration
outlined in the four preceding sttp are not remonably the
same at aII statiom, the process must be repeated until the
ratios become reasonaldy the same. Each new cycle starts
with the result ant displacement of each preceding cycle.
The convergence of this process to the second frequency and
the t.ram~formed second mode is proved in appendi.. A.

The transformed third mode and the third frequency are
computed in the following manner. The transformed third
mode is defined as that combination of the first three natural
modes which has a zero ordinate at the same station that was
used in the transformed second mode (station A) and also a
zero ordinate at some other station, station B. Thus the
transformed third mode is defined as

)?/3– Y1–(,~ ~(YrYl)

The iteration is as follows:

t 1) A plausibk shape yd U}for We transformed third mode

is assumed. This shape must have zero ordinates at sta-
tions A and B and should satisfy the boundary conditions as
~li~ely as possibIe.

(2) The dispIacwnent

is calculated with the square of the frequency w/ carried
along as an undetermined factor.

(3) The Erst of two sweeping operations, in which a first-
mode shape is swept from the displacement yb w as to make
the resulting displacement at station A zero, is performed.
This operation gives the displacement

)Yb—(,; ~?/1
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(4) The second sweeping operation, in which a transformed-
second-mode shape (previously determined) is swept from
the resulting disp~acement of step (3) so that the new
resuIting displacement is zero at station B as well as at
station A, is performed. (This second sweeping operation
cannot disturb the zero condition at station A established in
step (3) because the second sweeping function (the trans-
formed second mode) is identicality zero at station A.) Thus,
the final resulting displacement is

(5) Comparisons of the ratios y~(a/y~(’) at all stations are
made, and, if they are not reasonably the same, additional
cycles of iteration are carried out until the ratios become
reasonably the same. The third frequency is then computed
from the rat ios as e.xplaincd previously. Convergence of
this process to the third frequency and the transformed third
mode is proved in appendix A.

Frequencies and transformed modes higher than the third
may be computed by extensions of the process just described.

PHYSICAL LNTEBP8ETATION OF THE PROCEDURE

A physical interpretation of the iterative transformation
procedure can be giren. With regard to the transformed
second mode, for &xampIe, the following question may be
asked: UncIer what conditiom can the beam vibrate in the
transformed~econd-mode shape at the second natural
frequency? Wbrat ion in shape y~ =YZ—V1 at frequency m
implies an inertia Ioading W22(W-W). But if this load is
substituted in plfice of -y%”~in the right-hand side of equation
(2), the r~~t after integration will not be Y*–Y, but

y:—$= .ImJ’r 7@12(y2-@(~@4 (3)

However, if an external (forcing) Ioad of an amount
7(q2– u17Y1 is added to the inertia load, the total load
7(w2~2—wl~J VW produce the shape y2—yl. Thus

JI+IJLJ’-f(iq~y— @/J(dir)4= y2—’yl (4)

The inertia and forcing loads are illustrated in figure 1.
The inertia load acting alone produces a disphwement
(equation (3)) generally different from zero at station A.
The forcing load produces the displacement

This displacement (equal to the sweeping function) has the
shape of the previoudy determined fit mode and is equal
and opposite at station A to the displacement due to the
inertia load; that. is, by virtue of the previoudy assigned
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norm. dization9 at station A,

(5-’)’’’’’=-(’’-3”). (6)

Thus the displacement due to the forcing load is completely
determined when the -displacement due to the inertia load is
known, The gist of the foregoing rmalysis is that vibration
in th~ transformcd-second-mode shape is the response of the
beam to an oscillatory forcing load of the first-mode shape
ti.nd of frequency equal to the second natural frequency,
superimposed on a free vibration of the beam in the second
natural mode.

Si milm physical interpretations of the iterative transformat-
ion process for modes higher than the second can be made.

APPLICATION OF THE PROCEDURE IN ORDINARY COUPLED
NATURAL-VIBRATION PROBLEMS

The procedure that has been outlined in a preceding section
for pure ffexure can ensily be extended to systems capable of
simultaneous flexural and torsiomd displacements. Airplane
wings belong to the latter class of systems. The only
distinguishing element in coupled flexural-torsional vibration
problerm is that each natural mode contains two components,
the flexure and the torsion. Tlmse components must always
appear together in a fixed relation to each other. The two
components must be computed together and must be used
together.

A

(a)

. —.
J-.

/ .
/ \

_- -7”7 =.
(b)

(a) Tmneformedwand mode:#.t-n-#1.
(b) Inertfalwd: w#b-ud.
(c) Fomlnglead: Y(w+w%.

Fmw.z l.—Illuetrwfonof physical ta.ls of lkrative trmsformatlonprordum.

Each coupled mode is a solution of the sinmItancous
differential equations

(7)

(8)

Equations (7) and (8), after integration, become (for a
cantilever beam)

(9)

(lo)

The solution of the integral equations (9) and (10) for the
coupled transformed second mode by the iterative trtms-
formation procedure is outIined diagrammatically in figure 2.
The ffexural component of the &spIaccmcnt for a particular
step is illustrated in the left-hand side of the figure and the
torsional component is illustrated at the same level in the

*

.. ..——

(a) kwuned transformed.semndmode.
(b) IntamedMe derhwdmode.
(c) First-mode8we4phlgfunction.
(d) Derivedtransformedwand mode.

FIGUREZ—lllustmtlonof stem in the N.eratlvetmnefonuationprocedurefor detcrmlping
wuried modes.
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In the first step, an approximation to a linear combination
of the true fim~ and second coupled modes is assumed. The
particular ~inear combination having zero flexural displam-
mtmt at the tip station (station .4) is chosen. (For greatest
numerical accuracy, this nodal point. should be chosen in the
romponent and at the station where the first coupled mode
has its maximum numerical value.) The symbols ~dfll and

+~:(~) are used to designate the flemmed and torsional com-
ponents of this assuro~ displacement, respectively. ln
general, the magnitude of the torsionaI component relative to
the flexural component is difficult to estimate; the most expe-
diwt thing to do is to take one of the components equal to zero.

The second step is the computation (by numericaI inte-
gration) of the two components of the displacement due
to the inertia forces ~%z(ye+ bu~d) and inertia torques
W;J( buyti+ 6%2&) that are associated with the assumed
displacement. The result is termed the intermediate derivd
mode. and the symbols Uhr’)and ~~(~1are used to designate
its two components.

The third step is the determination of a sweeping function
huving the shape of the first coupled mode (preciously de
termined) and a magnitude such that the sum of the inter-
mediate derived mode and the sweeping function equals zero
in the flexural component at station .4. In algebraic terms,
the first-mode sweeping function is given by

(11)

(12)

The fourth step is the addition of the intermediate derived
mode and the Erst-mode sweeping function to give the deri~-ed
transformed second mode. Thus the two components of the
derived transformed second mode are

(13)

(14)

‘he calculation of the ratios y=fa/ytiuJ and &@/&(l~ at
alI stations completes th~ first cycIe of iteration.

.Idditional cycIes are carried out. until the ratios at aII
stations in both the flexural and torsiomd components hare
vaIues that are reasonably the same. The true second natural
frequency of the cwupkd system is then obtained as described
previously.

Steady vibration of an airplane wing at. zero airsped is an
example of coupled natural vibration. The actual numericaI
calculations for the tram~fonned second mode as well as for
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the first mode and transformed third mode of an airpIane
wing vibrating at zero airspeed are discussed subsequently as
a special case of tlut ter.

The more general equations of airplane flutter at DonZero
airspeed may be interpreted in such a way thwt they can
be solved by n process analogous to that just described for
coupled naturtd vibration.

APPLICATION OF THE ITERATIVE TRANSFORMATION
METHOD TO FLUTTER

FLUTTER EQUATIONS

The di.tTerential equations of equilibrium for a wing execut-
ing simple harmonic motion arc

(15)

These equatiorw govern a motion represented by

The use of the structuraldamping coefficients g, and g+ in
equations (15) and (16) is discussed in appendi.. B. The ex-
pressions P,y+P4@ and (lwy+ Q~~ are the intensities of
appIied force and torque, respectively. For aerodynamic
and inertia forces and torques due to air flow and distributed
mass, the P and Q coefficients have values given by the follow-
ing formulas (rearranged from those in reference 4]:
For P,,

P,= P~—iPr” (19)
in Tvhkll

and

For P+,

P*= PE+–iP**

in which

(20)

(21)

(22)

p“”=(tY[(i-a)Y-:-’+’”l(:)$@’ ’23
and
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For Q.,

Qn=Qsr%?ru (25)

in which

and

For inertia forces and torques due to concentmted mass, the
intensities of force and torque are, respectively,

(31)

and

in which

and

“9’ 7‘)A”(:):”’&T?=(bo(w~. (35)

For a cantilever wing the boundary conditions on the
displacements are

(!Y) -[m+~%)%]...(!J)..O=(4)..O= ~z ,-0

[

d’y1[=:EI(I +%)=, -L= Gc7(l+ig4):
1

=0 (36)
z-L

The differential equations (15) and (16) are now- written
with the eigenwdue a? as an explicit factor. Thus equationa
(15) and (16) become

and

‘+ CIKQ;Y+Q+’+)–: GJ(l+igJ ~= (38)

in which the P’ and Q’ coefficients are equal, respectively, to
the P and Q coefficients divided by W2.

FOEbIULATIOh- OF PSEUDOFLUTTEE PROBLEM

Those solutions a2, (y, d) of equations (37) and (38) for
which & is a real and positive (not complex) qurmtity
represent the steady harmonic motions of true flutter.
Hovre~er, because the P and Q coefficients are in generaI
complex and because of the presence of structural damp~~,
the solutions of equations (37) and (38) -rdI, in general,
be complex and wiU include compl~~ eige.nvaks w’. Aa
in other methods of flutter analysis, the probIem is made
tzactabIe by assuming at the beginning a value of the pa-ram-

eter k=~ This assumption fixes the dues of the P and Q
D

coefficients. A red value of k is assumed because v must
be real and only reaI vahwa of w can represent flutter. To
a~oid the inconsistence of assumed real values of k and
obtained compIex Fahws of d in t-he soIutiona, the problem
itself is altered by introducing an artificial damping so that

the comple.. eigenm.h is giwen by
w’

-y where g= is the
1 +%,=

coefficient of arti&iaI damping. Thus the differentitd
equations of what may be termed the pseucloflutt er problem
become

The -due of w’ can nom be rea.1 for any assumed reaI value
of k and is therefore the square of the frequency of the steady
harmonic motion maintained by the artificiaIdamping
forces and the naturaILy present aerodynamic, inertia,
structural, and structural-damping forces. True flutter
is possible for those special cases in which g~is zero.

Equationa (39) and (40) are similar in form to equations
(7) and (8) and can be solved by the iterative transformation
procedure in a may completely ana.logous to the solution
of the ordinary problem. The complications introduced
by the presence of air forces require., ho-we~er, that a set of
solutions be obtained for each of several assumed ~ahws of ii.
The fact that most of the functions i.rmoked are complex
virtually qundruples the labor as compared with that
required in the ordinary coupkd natural-vibration problem.

STEPS L\- THB ITEEATIOh- A9 APPLIED TO FLUTTER

The iteration procedure employs t-he basic differential
equations (39) and (4o) in their integral forms which, for the
cantilever wing under consideration, are

SS
~=; o’ ‘ 1

SS
L ‘(p:y+p~’d) (dx)’ (41)

0 El(l +ig#) z 2

1

J4=;lGJ(l+ig~l zL(Q;v+ “~’d (W (42)

1+ig= of tiein which Cs tands for t-he more cormenient form —
a’

eigenvalue. The iteration of equations (41) and (42)
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follovis the same form as the iteration of equations (9) and
(10). Briefly, t-he steps are u follows:

(1) ~ real value of k is assumed and the values of the
campiex P and Q coefficients are computed.

ti2) h assumption is made for the desired mode y,~.
(ln the first cycle of iteration the assumec{ mode may be
real but in th following cycles it wilI be complex. )

t~) The complex loadings PVU+P$+ and Qry+ Q*+ are
wnputid.

(4) The integrations indicated in the equations are
carried out numerically to get the complex intermediate
derived mode.

[51 The sweeping operations are performed by using the
romples Iower-order transformed modes previousI.v deter-
mined,
flexumI
(swept)

and

For convenience in numerical ~aMati&s, the
and torsional components of the compI~~ derived
transformed mode are computed in the forms

1 TO L4 EOIObo= ..—— .—— ——
C POEOIOQOtJOL’ h

(43)

(44)

wspectirely, in which A“vand h“t are nondimensional com-
plex functions of the spanw-ise coordinate z.

(6) The derived and assumed modes are compared by
computing their ratios at the stations of the wing. lf these
ratios are not reasonatiy the same, additional cycles of
iteration are carried out untiI the ratios are reasonably
the same. ln the limit (never obtained in practice) the
ratios will be identical and the proper -rahle of C is that value
which makes them unity; that is,

in which y and # constitute the assumed mode of the Iimiting
cycle and the functions in the numerators constitute the
derived mode of the limiting cycle.

Equation (45) may be stated in the form

(46)

in which D and E? are nondinlensionaI real numbers. lhas-

much as Cis defined as ‘, equation (46) maybe written
as

(47)

from which the frequency and artificiddamping coefficient
are obtained as foUows:

96=$ (49)

The relative air velocit~- corresponding to the assumed due
of k is given through the definition of k, that is,

(50)

NUhlERICAL EK431PLES

~Xumerical comp ut a t iona presented in this section illustrate
the actual application of the iterative transformation pro-
cedure first to the ordinary natural-tibration problem
(vibration at zero airspeed) and then to the flutter problem.
All examples deeI with the canttiever wing shown in figure 3.

The geometric, structural, and mass properties of the
wing are given in figure 3. A station coordinate system is
empIoyed for the purposes of the required numerical inte-
grations. Four stations along the span lMW been selected
as indicated in the figure; one of these stations is located at
the spanwise position of the concentrated mass. The dis-
tributions of forces and displacements over the span are
considered to be adequately defined (through interpolation)
by the forces and displacements at the four selected stations.
The selection of a system of stations in any problem is im-
portant because it greatly influences the amount and accu-
racy of the work to follow. In problems, such as the present
one, that involve ccmcentrat ed masses, a station must be
placed at each concentmted mass because displacements at
the concentrated masses must be known. (More generally,
a station must be placed at each discontinuity. Discontinu-
ities may be present in the distribution of the structural
sttinesa and in the plan form as well as in distribution of
mass.) The other stat iona should be equalIy spaced between
the discontinuit.ies, and for the system of parabolic inter-
polation used in the numerical integrations in this report
there must be a minimum of one station between each
adjacent pair of discont inuit ies. The total number of
stations should be the smallest possible that is consistent
with the desired accuracy because the calculation effort
increases rapidly with an increasing number of stations. In
coupled systems, the number of degrees of freedom allowed
is twice the number of stations selected; that ia the number
of degrees of freedom in either the flexural or torsional

,A%sfla Om.e
,,’p-avfty Clxfs

ao9s.9*.. ao270 Srudff.., t 8 AGdchced OW-S
. ,1 #f ,.

I

=5:2-..=-,1

#-o.cnE3isWg/fw
p=32.6

EI=W7.I Ib#
(LT.$S).6Ib-ftz (;)’ gm53

Fmtm 3.-Prow.rtk ofcantfkec * usedfu munerfcdemropla
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component of displacement is equal Lo the number of stations
employed. Experience has indicated that with parabolic
approximations results accurate to .at least two significant
figures in tho l@esL mode computed can be obtained by
employing numbers of stations as follows: For uncoupIcd
sysLems, the number of stations should. be two greater than
the order of the highest mode to be computed; for coupled
systems, the number of stations should be one greater than
the order of the highcwt mode to be computed, with a mini-
nlum of three stations. More than these.minimum num.bcrs
of stations may be required if their use is dictated by suffi-
c.iwLly many discontinuities.

ORDINARY COUPLED NATURAL MODES AND FREQUENCIES

The calculations for the fimt, swscmd, and third modes at
zero airspeed for tho wing of figure 3 are shown in tables 1,
2, and 3, respectively. In this case k= ~ and the only
aerodynamic. forces are the apparent-mass forces. For
simplicity, structural damping is disregarded; therefore, all
quantities entering thu problem are red. The numerical
values of the aerodynamic-hertia force coefficients for
k= m, as well as for other values of k to be used subsequently,
are given in table 4.

The first coupl~d mode is computed in table 1. TabIe 1
shows in separate tabulations the ffexural a~~dtorsiomd parts
of the mdculat.ion. The fiwt c-yclc of iteration (part (a) of
the table) is shown in full detail. Two forms for the tor-
sioual part of the calculations are shown: The fit form
may bc used when the torsional stiflness GJ is constant o~er
each bay or over the w1101clength of the wing; the second
form, which requires slightly more work, must be used
when GJ is variable and may be used, as in this case, when
(3J is constant. The second and third cycles of. iteration
are summarized in parts (b) and (c) of table 1.

Details of W first cycle of iteration, if the procedure that
applies omy for constant torsional stiffness .GJ for t,lw tor-
sional part of the ca.Iculation is used, are as follows: In
columns 1 of table 1 (a) the two parts IA(l) and ol(~) of the
assumed first modo arc listed. The torsional component is
assumed to l-wzero because it will ultimately be small and is
difficuIt to estinmte. CoIumns 2 and 3 are the appropriate
products of the assumed mode and the distributed-force
eoeflicients. Columns 4, which are the sums of columns 2
and 3, give the two components of the extemrd load which
correspond to the assumed mode and the arbitrary frequency,
Columns 5 give the concentrated loads (external forces and
torques) that are equivalent to the distributed loads of
columns 4. These equivalent concentrations are given in
cohmm.s 5 in terms of tho pertinent distances between sta-
tions Xi arid in dunns 6 in terms of the reference distance
~. Formulas used for computing the equivalent concen-
trations from the distributed loads are given in appendix C.
Columns 7 and 8 are the appropriate products of the assumed
mode and thti concentrated-force coefficients. Cohlmm 9
are the total concentrated Ioads, tho sums of columns 6, 7,
and 8.

The flexural and torsional calculations must now be dc-
scribcd separately. In column 10 for flexure, tho avcrago
shears in the bays between stations are found by a successive
summation of Lho concentrated loads from tlm tip where
tlm shear is zero inboard to tho roo~. In cohunn 11 LIMincre-
ments of_ bending moment are computed by multiplying
the shears by the bay lengths in terms of b, The bending
moments of column 12 aro found by a successive summatio~~ .—
of the increments of bending moment from the tip where the
bending moment is zero inboard LO [.hc root. Column. 13
gives the distribution of curvature, which is obttiimd by
dividing each ordinate of the I.wnding-morncnt curvo by Lhc
10CRIvalue of M (El in this example is constu-nt). Equiva-
lent concentrated curvatures arc now obtained by applying
to the distributed curvatures the previously used formulas
for equivalent concentrations. Column 14 gives these
cquivahmt cone.entmtions in terms of tho distances k{, and
column 15 gives them in terms of the reference dislmwe b.
The average sIopes in tho bays arc obtained in cohmm 16
by a successive summation of the concentrated curvatures
from the root where the slope is zero outboard to the tip,
The increments of derived flemral displacement tire com-
puted in column 17 by multiplying the average slopes by the
bay lengths in terms of ~. The fle.mml component Vi(a)of
the derived mode is obt~incd iu column 18 by a succwsivo
summation of the increments of displacement from the root
where the displacement is zero outboard to lhc tip. Column
19 gives the ratios at th~ selected stations of the kivcd
flexurd component to the assumed tlexural component.

Columns 10 to 15 for torsion are now considered. Column
10 gives the average twisting moments in h bays of Lh(?
wing and is obttiincd by a successive summaLion of thu
concentrate ed torques of column 9 from the tip where tlw
twisting moment is zero inboard to the root.. The avertigc
twists in the bays are computed in column 11 by dividing
the average twisting moment in each bay by t.hc local value
of GJ (GJ in thisexampIc is constant over tho WI.LOICspun).
The increments of derived torsional displacement are obtained
in coIumm12 by multiplying the average twists by Lbe bay
Icngths in terms of b. The torsional component of the
derived mode is computed in column 13 by a successive
summation of the increments of displacement from .tlm root
where tho displacement is zero outboard to the tip. inas-
much as the derived displacement of column 13 is in terms
of GJ, the displacement is converted into terms of W in
eohmm km that it may be compared with the assumed
torsional .displaceme.nt on the same basis as the assumed
and derived flexurd displacements are compared and so tha~
the next cycle may be started with displacement compommk
having the same dimensions as the assumed mode of this..
fit cycle. Column 15 normally would contain the ratios
at the sekctcd stations of the derived torsional component
to the assumed torsional compommt, but in the case of tabio
1 (a) these ratios are meaningless because the toreionaI
component will uIt.imateIy bo difhrent than was assumed
in cohmm 1.
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Before the results of further cycles of iteration for the first
mode are described, the form that the numerictd integration
for the torsional component must take when GJ is variabIe
is described. In the part of tabIe 1 (a) showing the calcuk-
tion for variable GJ, cohrnna 1 to 4 are the swne as in the
mhmlation for constant GJ. The form of the numerical
int egrat.ion changes at cohmm 5. Column 5 consists of
increments of twisting moment. over the buys. These incre-
ments are obtained as increments of area beneath the curve
of ([ist ribut cd torque (cohnnn 4). Formulas used for com-
~luting these increments are given in appemiix C. In cohlmn
5 the increments of twisting moment. are given in terms
of the distances A{,and in column 6 they are given in terms
of the reference distance AO. The twisting moments at the
selected stations due to the distributed torsiomd loading are
ol]tained in column 7 hy a succe~~ive summation of the incr~
rmmts of twisting moment. The components of external
concentrated torque nre as for constant GJ and are given in
mlumns S and 5. ‘Mc applied concentrated torque gives
twisting moments as shown in column 10. Colunm 11 is
thtl sum of columns 7 and 10 and gives the totaI twisting
moments at the iwlected stations. (hTote that in columns 10
WI I I ther~ is a discontinuity in twisting moment. at the
station having the mass discontinuit~.) CoIurnn 12 gives
the distribution of twist found by d~viding COhunn 1I by
the locaI value of GJ (GJ be~m in general not constant).
The increments of derived torsional displacement are com-
puted in coIumns 13 nnd 14 by applying to the dues of
(w]llmn I2 the same forrnuIas applied previously to coIumn
4. The torsional component of the derived mode (cohmms
15 and 16) is, except for small computational discrepancies,
the same as in the previous method, as it should be.

Two additional cycles of iteration were found to be ade-
(Iuute for th~~determination of the first mode and frequency.
ThtI results of these iterations are shown in parts (b] and (c)
of table 1. In toble 1 (b}, for exampIe, columns 1 give the
two components of the assumed mode of the second cycle,
wI]ich am obtained by normalizing the derived mode of the
first cycle to unity in the flemmd component at the tip
station. This norrnrdization is not essential but facditates
mtinipulfit ions and comparisons by keeping the numericaI
v~ilues in aII cyck within the same range of magnitude.
Mumns 2 give the derived mode obtained by the numericwl
integration procedure just described. The ratios of derived
to assumed mode are given in cohunns 3 for both components
of displacement. These rat ios are seen to be fairly uniform.
The ratios obtained in the third cycIe in tabIe I (c) are, for
lJractical purposes, identical. The averaging device shown
ill columns 4 of LabIe 1 (c) and beIow table 1 is adopted
as u quick and generally quite accurate way of smoothing
out smaIl discrepancies that remain in the ratios after
convergence is ahnost complete. This device, aMlo ugh
dearly not necessary in the case of table 1 (c), is useful in
other cases throughou L the rmmericaI examples and is ex-
plained as follows: T& two ratios in cohnnns 4 are obtained
t}y considering the ffexural and torsional components of the
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displacement separately and then dividing the sum of the
station values of the derived displacement by the sum of the
station vahms of the assumed displacement. When a dis-
crepancy remains between two ratios of the type in columns
4, the average of these two is taken as the finaI vaIue;
the flnaI value for this case is gi~en in the calculation
below table 1. This device gives greater weight to the larger
ordinates and is in that respect simiIar to other weighting
procedures such as the energy and Ietist-squares methods
but is much simpler. If the assumed and derived displace-
ments contain both positive and negative ordinates, the
negat.i~e ordinates shouId be changed to positi~e for the
purpose of the summations. The remaining calculation
showu below table 1 gives thtit value of the arbitrary fre-
quency a which makes the ratio just. computed unity. As
prored in appendix A, this vaIue of u is the fundamental
frequency MI.

Table 2 gives the main results of three cycks of iteration
required to obtain satisfactory approximations of the second
frequency and the transformed second mode at zero airspeed
(k= m). Columns 1 of the first cycle (parts (a) of table 2)
contain the two components y~(l) and &(l~ of the assumed
transformed second mode. This mode must have one zero
ordinate (excluding the mob ordinates). Although this
zero ordinate may theoretically be taken at any station, the
numericaI accuracy of the rewdts is greatest if the zero ordi-
nate “Hplaced at the station and in the component where the
preceding mode (the tirstj has its maximum numerical value
(since the numerical process is such that the Iarger ordinates
contain more significant figures than the smaler ordinates).
Therefore, the zero ordinate of the transformed second mode
is placed at. the tip station in the flexural component, this
location being designated station A. In the numericaI
values of coIumns 1, the ftexural component y@fLl -would
normalIy be taken as zero. (The values that are shown are
estimated from flutter calculations that had previously been
made for t-his wing.) Cohmms 2 give the intermediate
derived mode obtained by numericaI integration. Columns
3 constitute the first-mode sweeping function. The shape
of this sweeping function is given by columns 2 of table I (c)
and its magnitude is such as to be equal and opposite to the
intermediate derived mode at station A. Thus the derived
transformed second mode (coIumns 4), which is the sum of

cohm.ns 2 and 3, has zero ordinate in the flexursd component
at station A and a shape comparable to the assumed mode, as
indicated by the ratios in columns 5. The ratios in the next
two cycles (parts (b) and (c) of table 2) show marked im-
provement in uniformity. The finaI value of the ratio com-

puted beIow the table gives, as pro-red in appendix A, the
vaIue of the second frequency uZ, as shown.

The main results of the iterations to obtain satisfactory
appro.ximations of the third frequency and the tram~formed
third mode at. zero airspeed are stated in table 3. TypicaI
operations requir~ in a cycIe are oudined in table 3 (a).
Columns I give the aesumed transformed third mode made
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up of the two camponenta yd(~ and ~~. Thr3 transformed
third mode ia M have a zero ordinate in. the flekurtd compon-
ent at the tip station as in the transformed second mode and
a zero ordinate in t.k tomional component at the tip station,.
The location of the aeoond zero ordinate is d@yated station
B, To obtain greaht numerical accuracy, the selection of
the second zem ordinate is governed by the same rule that
was used for selecting the tit zero ordinate, nandy, that
the new zero ordinate should be placed at the station and
in the component where the preceding mode (the transformed
second) has its maximum numerical VaIue. The myncrical
valuea that are shown b columns 1 are whimat.o~ from prc-
vioua flutter calculations; the torsional campommt ~(~
would normally be taken as zero, Columns 2 give the intA*r-
mediate derived mode, and columns 3 give the fmkmode
sweeping function which, as before, has a magnitude at sta-
tion A that is equaI and opposite to tlm intmnediate derived
moth, CoIumns 4 constitute the tranaformed+eoond-mode
sweeping function which ha a shape given by columns 4 of
table 2 (c) and a magnitude at station B cquaI and opposite
to tho sum of the intermcdiato derived mode and tlm ilrsk
mode sweeping function (tlw sum of columns 2 and 3). The
derived transformed third mode of the first cycle is the sum
of columns 2, 3, and 4 and is given in columns 5. The ratioa
in columns 6 are far from uniform. Tbe ratios in,the second
and third cyolea (parts (%)and (c) of table 3) show improve-
ments in uniformity. The iteration is discontinued at the
end of the third cycle where tho ratios are about as uniform
a~ they can get with the limited number of significant figures
that are present. The frequency obtained by the smwthiog
device is the third frequency ~ and has the value shown.

The pattmns laid out in the foregoing examples estaldisl.t
the general t.mhnique that can be used to obtain zem-
aimpwd modes and frequencies higher than the third,
Guiding rules for determining tho number of selected stations
to be employod havo been given previously. Tkae examples
also set the basic pattern for the computation of the modes
and eigenvalu- of pseudoffutter and of flutter.

MODmANDEKIENVMlllMOFPSBUDOFLUTTEEAND OF FLUTTEB

The operational solution in reference 5 gave for the wing
under consideration (@g. 3) a reduced_ frequency at flutter
of 0.1443. In order to use this operational solution, this
same value (k=O. 1443) is used in the flutter cdculationz
that fouow.

The oakulations for the fist, second, and third modes at
k= O.1443 are shown in tablea 6, 6, and 7, respectively.
Aerodynamic-inertia force coeflicienta have been computed
by equations (19) to (35) and thek..values. are. given in
tabIe & ~~Structural damping ia disregarded, although a note
on the method of incorpomting structural damping in the
calculations is made subsequently.

TabIe 5 (a) shows in detaiI the fmt cycle of itcrat.ion fm
the first mode. The form of t.ha computations is the sams
as that shown previoudy for the determination of zem-
airapmd modes. The amount of computation, however, ia
between three and four times that required for zero-aimpecd
modes because of tho fact that the functions involved arc
complex and thus must k described by two parts--a
real part and an imaginary parL. Columns 1 and 2 are tllc
real and imaginary parts, respectively, of the assumed fimt
mode. h a skrt, sII parts of the assumed mode except t.lw
retd part of the flexural component are taken as zero. Col-
umns 3 .to 6 are the rd parts of the products of amodynamic-
inertia coefficients and the awmmed mode, and thus their
sums (columns 7) are the real parti of the distributed load.
If the expressions for the dktributcd load are considered,
this coalition is more evident. The distributed forces pro-
ducing floxure me given by

The terms of t.horeal part of equation (51) appear in cohmma
3 to 6 in the flexural part of tabIe 5 (a); the terms of t.hc
imaginary part of equation (51) appear in columns 22 to 25
in the ffexural part of table 5 (a.). This separation of real
and imaginary parts allows the displacement due to each part.
to be computed separat.dy, A similar explanation can be
made for the quantities in columns 3 to 6 and columns 18 to
21 in the torsional part of table 5 (a).

ReaI “ind intaginalT parts of the concentrated loads tltat
are equivalent to the distributed loads are twmputod as
explained previoudy by the formulas of appendix C. These
vaIues are shown in columns 8, 9, 27, and 28 in tku flexural
part and in columns 8, 9, 23, ancl 24 in the torsional pmt.
The real and imaginary parts of the loads duo to the ccm-
centrated mass follow next in order, and the total concen-
trated Ioads are given in cohmme 12 and 31 in tho flexutal
part and in cdunna 12 and 27 in the tmional part. The
av~. shears, average twisting momenta, and bending
momenta are then computad as described previously.

The remaining parta of the omnputatione in tabIo 5 (a)
tltiit are associated. with the real parta of the load are de-
scribed as followw (the remaining parts that are associated
wihh the imaginary partJ3of the Ioad are similar): Column
16 in the flexural part givw the distributed curvature duo
to the realpart of Lhe Ioad. This curvature is obtained by
dividing the ordinat.w of tho real part of tho bending-moment
curve by tho local valuM of the complex flexural stihesa
W(1 +*r)(l+igJ. ln these examples, any actual Stnto-

tnrd damping ia disregarded: therefore g, is zero. Tbo

. .
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factor l+iga, containing the as yet unknown artificial-
{Iwnping coefficient, combines with d to give the factor 1/(?

1%-g=
in column 16, C’ being the arbitrary eigenvalue —“

cl)’
If the actual structural clamping gr is regarded as other than
zero, the values in cchmn 16 would be computed as follows:
The real and imaginary parts of the bending moment wotid
he combined into the complex bending moment ME+ Wz.
This compIex bending-moment distribution wouId then
he divided by the locaI vahws of the complex stiffness to gire

Ma+iA~l..— --–.—” The factor I +iga WOW be carried
EI(l+igr)(l+lg=)
tdong in the mbit rary eigenvalue C, and the numerical dues

-~~.+i~f,td the nxd part. of the quotient
EI(l +ig”)

WOUM be placed

in column 16. The imaginary part of the quotient would
he sirdarly placed (in ccdumn 35) in the calcuhtions asso-
ciated with the imaginary part of the load. The average
t.wkts due to the real part of the load are computed in
column 14 in the torsional pmt of table 5 (a), and those
<Iue to the imaginary part of the load mmk also be computed.
These calculations folIow the same pattern as those just
explained for the curvatures. The ccmplex torsional stifT-
ness ~~(1 +igd) (1 +ig=) enters in place of the complex
fh’xural stiffness. If GJ or go is variabIe over a ?}ay length
or over the whole span, the numerical integration for the
torsional part of tbe caletiations should be carried out. as
explained in the part of talie I (a) that deaIs ~~ith variable GJ.

The numerical integrations are completed in the manner
already described, ancl the derived mode is thereby obtained
in the form of four compcments of displacement. The
tlexural comprments are yl~(a and y,~(a of columns 21 and 40
in the fle.xural part.. The torsional components are @lz(a and
&[~ of columns 17 and 32 in the torsionaI part. However,
these components are not actually the real and imaginary
ptirts of t~Le flexuraI tmd torsional components of the derived
mode, because each one of them contains the complex factor
I + ig.. ~’evertheless, the complex deri~ed mode is gi~en
hj- yl~(~ +iyu(~ and &B(a +i~u(a.

The compIex ratios of the compIex derived mode to the
w}mplex assumed mode me computed in column 4 I in the
flexural part and column 33 in the torsional part. Only
two of these ratios have &tuaIIy been computed but they
are suficienh to hiicate the need for further cycles of
iteration.

.4 total of four cycles of iteration (the main rwdts of the
ltist three are shown in parts (b), (c), and (d) of table 5)
was required for satisfactory convergence. In columns 6 of
table 5 (d) and immediately beIow table 5, the smoothing
device described previously is appIied to obtain the best

stiIe vaIue of the ratios. The fundamental (first) eigen-
value is that value of C which makes the ratio unity. Thus
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C,= (269.5–82X) ~~
1 +ig=[

and since Cl is detlned as —)
ul~

the frequency and artificial damping of thti first mode are
obtained from the real and imaginary parts of the equation

_=(269.5–82.2i) ~~
u 1*

(52)

The calculation of these quantities and the corresponding
bu,

airs~eed 01 which is obtained from the rdation PI=— are
k

shown at- the hot tom of tabIe 5.

Tables 6 and 7 show the main results of the iterations to
obtain the transformed second and third modes for k=O. 1443.
Four cycles of iteration for each mode gave satisfactory
convergence. The assumed modes of columns 1 and 2 of
tabIes 6 (a) and i (a) were taken in the forms recommended
previously in connection with tables 2 and 3. In tabIes 6
and 7, the compIex intermediate derived modes me given
by yblz(=~+ig*/’~ and &.E(’)+i&~m), the compIex first-mode
sweeping functions, by ~L!lR(n)+’i~ol$m) and &.lIZ(”)+i$~K(”)
with shapes corresponding to columns 3 and 4 of table
5 (d), and the comples transformed-second-mode sweeping
functions, by yU@) +iy~(”] and +-(’) +i&ti(R) with
shapes corresponding to cohmms 7 and 8 of table 6 (d). The
results computed in and beIow table 7 give for the third
eigenvaIue gds=O.030 and q= 16S.9 radians per second.
The corresponding tiirspeed is 0s=390 feet per second.

COMPUTATION OF TRUE MODSS

Because the critical flutter velocities are given directly by
the eigenvaIues, knowledge of the true modes in flutter
problems is of no vaIue (at Ieast of no value recognized at
present). The same statement applies to the transformed
pseudoflutter modes, with the exception that in the iterative
method their determination is a necessary adjunct to the
determination of the eigenvalues. In ordinary probkns of
forced vibration (at zero airspeed), however, the true modes
are often used -with great advantage. For this reason and
for the sake of completeness of the presentation of the itera-
tive transformation procedure, the method of determining
true modes from resuh.s of the iterative transformation
procedure is ilbtrated in tables S and 9.

The computations in tabIes S and 9 pertain to the same
wing anaI~ed in the previous exampks. The modes com-
puted are for k= O.1443. The true third mode as computed
in t.abIe 9 may therefore be compared with the flutter
mode computed for this wing by the operational method in
reference 5.

In table 8, t hr true second mode is computed as follows
from functions appearing in the last cycle of iteration for the
transformed second mode (tabIe 6(d)): Preceding the table

272 M3-54—-2I
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proper is the ca.lculat.ion of the eigenvrdue factor F19=~2— 1

that is needed for computing the true second mode. In the
terminology of tables 6(d) and 8 and as shown in a.pprndi~ A,
the true-second-mode shape is given by

l/ai7+~l/z?=(l/IE+h/Ir)+ (lLT2R(n+ilL%21’8q (53)
and

@?R+~@21=(d1R+~ 411) +(+a2R(o +i&#) (54)
in which

and

Cohmms 1 of tab]c 8 show the key OrdhMe (y~l~(a+iyblr(4))~ of
the first-retie s~~ecpingfunction $f~~~(4)+iy~,~(a, &~R(a+’i$b~~(a
as given in columns 5 and 6 of table 6(d). The key
ordinate is taken as the largest ordinate (the ordinate at
station A) for the reason of accuracy cited previously, The
kev ordinate of the fiat-mode shape yln+iyu, #l~+i@II (equal
to the tirst terms on the righbhand sides of equations (53)
and (54)) is shown as the boxed value in column 2 and is
obtained by dividing the value in column 1 by the eigenvalue
factor F’,*. The other values in coIumns 2 are obtained by
using the key ordinate in conjunction with the first-mode
shape given in cohunns 3 and 4 of table 5(d). Columns 3
show the t.ransformcd-se cond-mode shape yL12R(&)+ ‘&u(5),
Oa,,(o +ioau(n (equal to the second terms on the right-
hand sides of equations (53) and (54)) given by culumns
i and 8 of table 6(d). The sum of cohnnns 2 and 3 which
is given in coIunms 4 gives the shape of the true second
mode ym+iyzz, &R+idU (equal to the left-hand sides of
equations (53) and (54)),

In table 9, the computation of the true third mode pro-

wcds as foIIows: The necessary eigenvalue factors ~la—+1
*

and J’n= ~— 1 are computed as shown. ln the terminology
8

of tabIes 7(d) and 9 and as shown in appendix A, the true-
third-mode shape is given by

YaR+~Y81=(YIIR+ ~YIII)+(YIM+~YIZI) +(Y~R+iy~1)+

(hi?(’) +ixlarw (57)
and

in which

() ():8– 1 (YIIR+~%II)+ ~—1 (Y12R+~?/12Z)

= yblR(o + @blK(4J (59)

= d%lR(o +~dblJ(4) (60)

(cl)

(62)

and y~w+ iylsr, t$12E+i41W is to y~+iyar, ~&R+i& as

YIR+ ‘h hR+ ‘h’s ~ %2R(b) +%?r(b], &2R(5) + &I(o in tabk

8. The key ordinates (1/blR(4}+ ‘iybu(4))4 and (4MB(Q+ i~m(o)~
of the first and second sweeping functions appear in columns 1
and 2 and are taken from columns 5, 6, 7, and 8 of t.able
7(d). ‘l’he key ordinata of the functions ~u(Y1?R+iYIu),
~~a(@~R+i&), which arc eqUd to the s4!cond tel’mS On the
left-hand sides of equations (59) and (60), is computed in
coIumns 3 by using the key ordinate. of cohnnns 2 in con-
junction with ordinates at stations A and B in columns 2
end 3 of t.able 8 as folIows:

The key ordinate of the fu~CtioI]s~13(vllR+~ylll)! ~l:(@llR+kkr),

which are equal to the IImt terms on the Ieft-hund sides
of equations (59) and (60), is given in columns 4 find,
in accordance with equations (59) and (60), is t.hc diffcwncc

between ?/blE(4) +iyblz(~j dJblE(4] +hw(~ Of du~s 1 and
~2a(Y12R+~Y12r), Fas(@12R+ idla~) Of columns 3. The ktq’ ordi- .
nates of the first-mode shapes yllR+iylll, @uE+i$lu and

Y12R+@121j #w+@12r are shown in coIumns 6 and 5 and arc
obtained by dividing the values in columns 3 and 4 hy the
appropriate eigenvalue factors. The sum of the kc,y ordi-
nates of columns 5 and 6, shown as the boxed value in col-
umn 7, is the key ordinate of t.hc tottiI-first-nlodc shape

Yl12+~Ylrr $hR+’ihI ~~hi~~ ~ wd to the sums of the fir%t t~~o
terms on the right-haml sides of cquutions (57) and (58]. The
other values in columns 7 are obtained by using the key ordi-
nate in conjunction with the first-mode shape given in columns
3 and 4 of tabIc 5(d), Thu kcy ordinate of the trtmsformed-
second-mode shape Y@R+iyti, 4@R+i@W, which is equal
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to the third t ems cm the right-hand sides of equations
(57) and (58), is shown as the boxed -due in cohmms 8 and is
obtained b~- ditiding the value in cohmms 2 by the eigen-
vallle factor F=. The other values in cohmms 8 are com-
puted by using the key ordinate in conjunction with the
transformed-second-mode shape given in columns 7 and 8 of
talde 6 (dl. CoIumns 9 show the transformed-third-mode
shapti y~’s) + @=~5), #@’o +i+ats~ (equid to the fourth
terms on the right-htind sides of equations (57) and (58))
given by columns 9 and 10 of table 7(d). The sum of col-
umns 7, 8. and 9 given in columns 10 gives the shape of
the true third mode y=+ iyu, k+ik (equaI to the Ieft-
hand sides of equations (57) and (58)).

TRENDS A?iD COMPARISONS OF NUMERICAL RESULTS

Results of the computations shown in the. preceding
section of tbe report together with results of similar compu-
tat ions based cm other assumed YAWS of k are given in
figures 4 to 6. Figures 4 and 5 deal with tbe wing to which
the comwnt rated mass is attached. Figure 6 gives data of a
similar nature for the same wing without. the concentrated
mass. The computed results obtained by the RayIeigh-
Ritz and operational methods and the experimental results,
till of whirb arc given for this wing in referent= 5 and 6, are
ho recorded in figures 4 to 6.

In part. (a) of figure 4 the solid curves show the variation
of the artificial-damping coefficient g. with airspeed in each
of the first three solutions. For each assumed vaIue of k a
dashed curve is drawn through points that represent scdutions
for that value of k. Part (b) of figure 4 shows in a similar
way the variation of the frequency w with airspeed and the
lines of constant values of k. The facts of particular interest
that are shown by these plots are as foIIows:

(’I) The true ffut ter condit ion is given by the third sdut ion
for a vaIue of k between 0.1443 and 0.1590 at an airspeed
Anost equal to that found in the experiment. Here the
computed vaIue of g= is zero. The computed frequency at
true flutter is also in very ciose agreement with the experi-
mental vaIue.

~2”1The operatiomd solution is in good agreement with tbe
experimented solution, but the solutions obtained by the
Rayleigh-Ritz method with three and four modes vary by
72 percent. and 22 percent, respect iveIy, from the solution
obtained by the operational method. The operational s&-
tion is theoretically the most esart even though it involves
summations of ftite numbers of terms of infinite series.
However. as poiDtmI out. in reference 5, its use is limited in
pract ire to wings of uniform section. In the present example
the results obtained by the iterative method would be
expected to be better than the results obtained by the

Rayleigh-Ritz method because the eight degrees of freedom
used in the iterative method are much less restrictive than
the three or four used in the Ra@eigh-Ritz method.
AItbough exact ti.grcement- of the results of any of the con~-
putational methods with the experimental results is not to
be mpected, the better aggement of the iterati~e sohition
as compared with the operatiomd solution is at firsh sur-
prising. On further observation, however, this agreement
must be credited to a fortunate disposition of the errors
invoIved in the iterative method because, in the case of
&gure 6, the relative order of agreement of the operational
and iterative results with the experimental result is opposite
to that in figure 4.

(3) The trends of the solid curves representing the &t
and second soIut ions in figures 4 (a) indicate that both may
cross the zero artificial-damping asis at very Iarge airspeeds.

i? +
J-”30’ sawlbm

Q fiysec
(s) Variationof artIEcialdampingwtthdmpeed.
(b) Vsristionof freqneneywith afrspwl

FIGC= L-VarIsrion ofartifkiaidamping md frequency wit~ aim@ in tit tired s&ItItii
Piii with cmncentratalmaw.
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But. this conjecture is of no practical interest sa long as a
curve (the third solution) that crosses at a lower airspeed
Xsts. However, the question of whether the cur-re for
some solution higher tha.n the tbird couhl cross th~ zero
tirt ificial-darnping axis at tin airspeed lower than thtit at
}Vhirh the third solution crosses demands an answer.

(4} Reasonable assurance that., among all possible solu-
tiomr the cur-ie of third solutions in f@re ~ (a) crosses the
mro artificitd+!umping axis at a lower uirspeed than any
t~tber is pmvid&l by the trends of the curves for constant
vtilues of k in p~rts (a) and (bj of figure 4. The curves of k
sbuw thut the curve representing the fourth solution will
mfwt assuredly lip above and to the tight of the solid curves

q fqsec

,a) Vm’intlonof artiJ3.ci2JdumrdngWfti dmwed.
(h] Veriatlonof frequency with dmpeed.

I%;uux d.-Vmim1on of mttf!&J dmnplngmul frequency In Iirst three solutlons. Wlog
witbout cmnce.ntm.tti~%

in figure 4 (b) md probabIy below and to the right of the
solid curve for the thkd solution in figure 4 (a). The curves

ba

()
of k in figure 4 (b) are straigb t lines by definition k== .

Prediction of the courses of the curves of k in figure 4 (a)
cannot be made with rnucb ceriaint.v. They huve a strong
tendency to proceed to the rigb t, but it is easy to Meve that
upward or downward changes in their directions could tn?w
p~ace. The curve for the fourth solution, however, wouhi
probably cross the zero dampi~w axis at a vtilue of c between
500 and 6~ feet per second in figure 4 (a).

Fwre 5 shows and compares th~ amplitude and phase
distributions of modes computwl by the iterative transfor-
mation procedure and by the operational method for the
wing with u concentrated mass. The first and second modes
as well as the more important third mode from the iterative
solution for k=O. 1443 are plotted, and the third mode from
the iterative soIution for k=o. L590 is afso pIotted. The
third modes from the iterative solutions for the two values
of k aggee very me~l in shape \\ith the flutter mode obtained
in reference 5 by the operatiomd method, and the operational
mode lies between the two iterative modes. Thus the
agreement of the iterative and the operational methods is
again evidenced.

Figure 6 is a plot similar to figure 4 but relates to the
belmvior of the wirg anaIyzed in figure 4 if the cmcent rated
mass is not present. There ia very little similarity in the
data of the tw$ figures. The most notable difference is that
in figure 6 the true flutter mode appears in the second sglution
instead of the third as before and that the flutter speed is
Iower than before. Of id crest is the occurrence of ahnoe.t
equaI eigenwdues in the second and third soIutions for
k= O.50. The flutter speeds given in figure 6 by W methods
of soIut ion, including the RayIeigh-Rit z method, are seen to “
be in substantial agreement.

CONCLUDING REMARKS

The report has described the iterative transformation
method suggest ed by H. W’iekmdt and has demonstrated
the use of the method in an orderly computation of critical
flutter speeds. ~urnerical comparisons with solutions ob-
tained by other methods and with experimental vahes Ltive
been made. The applications made in this report show
promise for future practical use of the method.

lJxGLEY .k2RoNAuTIc.4L LBORATORY,

~ATIONAL ilDvLsORY CoMMI~E FoR ~EROxAuTICS,

~AXGLET FIELD, JTA., January 1?, 19r51.



APPENDIX A

ON THE CONVERGENCE OF THE ITERATIVE TRANSFORMATION PROCEDURE
NTRODUCTIOh-

The extensive etiting literature on the eigenvdue prob-
lems is concerned almost exclusively with the class Imown as
self-ad joint problems, in which the eigenfunc.tions and eigen-
values are red. In recent years, non-self-adjoint- eigemm.lue
problems have received inoreaaing attention. This ohs-s
includes the flutter problem in vrhich the eigenfunctions and
-eigenvahws are generally complex. The lit erat-ure referred
to by Wielandt. in reference 3 reveals that. the non-seIf-adjoint
eigenvalue problem and the transformation method for its
soIution have been given some attention since at least 1928.
W1eIandt’s own work constitutes probabIy the most extensive
contribution on the subject.

The discussion on convergence given herein is not con-
tained in Wlehmdt’s work and may be considered a rigorous
proof if the following assumption is valid: that the equations
(equations (41) rmd (42)) for the system (the wing) under
consideration have an infinite number of solutions that form
a complete set for any value of the reduced frequency k.
In the subsequent. demonstrations, the validity of expanding
arbitrary displacement functions in infinite series of eigen-
functions depends upon the validity of the assumption.
That complete sets of eigenfunctions do bt seems pIaueibIe
enough to justify reliance in the conclusions

BMICRELATIONS

For any one of the true solutions of the eigenvalue problem,
for example, the eigenvdue Cm and eige.rdunction v=,+.,
equations (41) and (42) may be written as

SS
Cmym= z ‘ 1 .

SS
L ‘(P;ym+P4’@=)(d@* W

o 0 El(l+lg.) r r

and

Clm4.= r 1 J‘(Qv’I/m+Q+’A)W’ (Az)o GJ(l+{g+) r

To make the notation more concise, let the coupkd mode
vm,#~ be represented by UM. Then if ym,+m is substituted
into the right-hand sides of equations (Al) and (A2), the
left-hand sides may be represented by ~.w=. Furthermore,
because of the linear character of the equations of the prob-
lem, substitution of the function series

jja,w,

into the right-hand sides of equations
818

(A3)

(Al) and (A2) gives

for the Ieft-hand sides the function series

~i?fa,w, “ (A4)

The coefficients at are, in general, compIex. The compkx
eigenvahm Ci are assumed in the subsequent proofs, except
where stated otherwise, to be ditlerent from each other, and
the eige.nvtalue having the largest modulus is defined as C,,
the second largest, as Cz, and sc forth, so that

IGI>IC21>ICJ> ..- (A5)

Expressions (A3) and (A4) are the expansions, in terms of
the eigenfunctions and the eigenvalues, of the functions
previously referred to as the assumed and intermediate de-
rived modes, rmpectively. The subsequent proofs of con-
vergence are based upon the fundamental relationship that
exists between espresaions (M) and (M).

FUND.4MEXTALMODE

The fundamental mode and eigenm.lue are found by itera-
tion according to t-he original Stodola procedure. In the
present t erminology and notation, this procedure and its
proof of convergence are as fouows: The coupkd mode as-
sumed at the b E&M@ of the first cycle of iteration in general
contains some component of each of the eigenfunctions;
therefore its most general expression is

(A6)

The intermediate deri-ied mode (which in this case is also the
final derived mode timuc.h as no sweeping operation is
required to obtain the fit mode) is for this first c-ycIe of
iteration

w~(lJEWl(q =5 Claiwi (Ai)
f-l

The second and follow-@ cycles are begun with the finaI
deri-md mode of each preceding cycIe, and thus the assumed
and derived modes of the nth cycles are

w,(’) =% C,n-’a,zc, (A8)

WI“+” =~ Cf’a<wi (A9)
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In accordance with the definitions gken in equation (&),
aII terms on the right-hand sides of equations (A8) and (A9)
except the first are negligibly smalI in comparkon with the
first for Iarge values of n. In the limit the fundamental mode
is obta~ed as

lim wl(”~l] =lim CIRa,wI (MO)
R+Q n+-

and tile fundamental eigenvalue is obtained from

TJL4XSFOR-MED SECOSD MODE

The inititd assurupt ion of the transformexi
in general is of the form

(All)

seeond mode

(A12}

in which the arbitrary coetlkier)ts bt are in general complex
find the subscript A refers to vahws of either the. flemwal or
torsional components of the eigenfunctions at station A.
X[ore specificaIIy, if, for exampIe, the nodal (zero) point of
w=Zis sekcted to be at station A in the flesurd component,
then the subscript A refers only to the flexural components
of WI, U& Wa, . . . and not to their torsional components.
Thus each term of the series in equation (.A12) satisfies the
requirement. that either the ffemmd or torsionaI component
of the assumed mode be zero at station .&

To simplify the subsequent work as much as possible, the
cigenfunct ions are henceforth assumed to be normalized to
unity at station A; thus

[wi)~= 1 (i=l,2,3, . . . ) (.A13)

Equation (.412) now takes the simpler form

u?d~‘“=2 b,(w,–w’) (.A14j

The assumed mode gken by equation (A14) leads, ac-
cording to equations (A3) and (.44), to the following inter-
mediate derived mode:

w,’” =2 b,(C,w,–C,w,) (A15)

Sweep@~ of this intermediate derived mode with the first-
mode shape (previously determined) leads to the derived
tran..formed second mode of the fit cycle as foIlows:

~eul =Jb[l) —(~) W,=s c,b,(w,-w) W6)
A ~=~

Vilen each succeeding cycle is begun with the derived
transformed second mode of its preceding cycle, the various
functions for the nth cycle are

~tiw=~C,’-’bi(u?,),) (Ali)

.
~b (8)= F C,*-lb,(C,wr–C,w,) (A18)

-2

The lirnits us n approaches infinity are

b tc@(’+l) =lim P2+Jw,-w1) (~~o)
n-m n+-

and

Equations (A20j and (A21) show that convergence to the
exact-transformed+econd-mode shape W—WI and to the
exact second eigmmalue C’zcan be obtained theoretically.

TRUE SECOXD MODE

The ke~- to computation of the true second mode is readily
found in the simpk case ilktrated in figure 1. In this case
the sweeping function of the fial cycIe of iteration would be
the displacement produced by the forcing Ioad -r(td-wz)yl,
in which Y1is the first-mode component of the transformed
smmnd mode -y~. The sweeping function is desiggat-ed by
yal which has a welIdefined numerical -ralue in the iteration.
Thus the vaIue of y, couId be found from the equation

that is,

The sum of y= given in the iteration and yl given
(.W3) gives W, the true second mode; that is,

y#2+’yl=3f2-”Yl+ ?41=Y2

By analogy, the true+econd-mode sham in

(A22)

(~~3)

by equation

(A24)

the fzeneral
(complex) proldern under consideration k’ found as ~llow-s:
The limiting value of the sweeping function is, from equation
(M8),
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The expression analogous to equation (Az3) is

TIN expression amdogmus to equation (A24) is

]im ‘W*,(R)
liru waa(n+u+’+”

c, =lim C,’b2wz (A27)
?l*- n+m

z,– 1

which gives tlw cxtict shape of the true second mode.

TRANSFORMED THIRD MODE

The first cycle of iteration for the transformed third mode
begins with m assumed mode that htis two zero values, one
of the4e being in the same (flcxural or torsional) component
and at the same station (station A) as previoudy employed
for the- transformed second mode, The other zero value
mtiy be taken in t.hc sanw mrnpone.nt as was t-he first zero
wdue. and at a difle.re.nt station (station B), or it may be
tuke.n in the other component at any station, including
station A. Either of these possible s&ctions for the loca-
tion of the second zero ~:alue is indicated in the following
equations by um of the subscript B. Tha inititilIy assumed
transformed third mode may l.w writteu as.

in Which the arbitrary coefficients df are compIex. IZ&h
turrn of the series in equation (A28) is zero at station A by
reason of the normalizations stated in equation (A13), and
each term is also zero at station B.

The various displacement functions for tho general (nth)
cycle of iteration may be expressed as follows: The resumed
mode is

The intwmediatu derived mode is

w,(.)=~ c,.-ld,[c,w,-c,w,-~a)jc,w,-clwl)]

(A30)

The result after sweeping the intermediate derived mode
with a &at-mode shapo such as to make the sum zero at
statiou A is as follows:

*b(n) -(%).w’=sc’”-’d’[c’(m’-w’)-
(%%).SW2-4 ‘(3’)

%vecpiug of the mode given by equation (Ml) with a
transformed-second-mode shape such as to make tho sum zero
in the flexural or torsional component (as the case may h) at
station B gives thu derived transformed third modo as follows:

(n)_ !!3!! ~,()[ ‘i&~b(?l)
~ti(n+l)=wb(nl _ _ _ ()]

,(W2–W1)

=.2c’=’’F:’-’:-r=;:~:,’l “’32)

The limits as n approaches infinity am

and

Iim *C?*
n+.

(A:34)

As showiby equations (A33) and (A34), convergence ta the cx

act4mnsformed-third-modo shape W—W1—
re).(~-”1’.-

and to the exact third eigenvahe Ca can be obtained thcorcti-
Cally.

TRUE THIRO RfullE

Computation of the true third mode is cxphined by rcf(!r-
ring again to the simple problem of pure flcxural vibration
in which air forms are excIuded. The transformed tl~ir~l
mode in this simple problcm wouId be given by

()I/,-,, B@2-~JYaa=Y8—vl— = (A35)

The total Iotid required to hoId the bmm in equilibrium in the
shape y.8 is

[ -(Ea?l’’-’”’’(E3s~’
-@a*y8—@ 1

If tic Imam is vibrating with shape VC3at frequency
inertia load is given by

‘“~”’’y~=’”’’[y(~):y(y”ly’-y”l

(A’(J)

q, the

(A37)

The forcing load required is the difference bcLwecu the tottil
Ioad (expression (A36)) and the imwtia load (equation (A37)),
that is,

(A3tI)

The displacement produced by this forcing load is

($l)[q~)B]y,+($l)(~)BY2 (AW
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and this displacement must be equaI to the sum of the
slveeping functions in the kst. cycle of iteration (if the
iteration has been carried to complete convergence). The
first sweeping function is of the first-mode shape and the
second sweeping func tion is of the transformed-second-mode
shape. lf the expression (X39) is written in the form

Puch of the sweeping functions contained in tk displacement

profluced by the forcing load is obvious. Thus

in which gt.t and yti designate the first and second sweeping
functions, respectively. Both of these functions have w-ell-
(lf~tined numerical values in the iteration.

If now a simpler notation is adopted, equations (A41) and
(.\42 ) can be written as

lltll{

itl tvhich

“’=[’-(Eal”

1211(1

(AU)

(A45j

(A46)

(.A47)

T1le true third mmlp is clemly gi~-en by the sum of equat ions
{.M5), (A45), (A4t3), ant-f (A47); thus

Lf3=w3+l/ll+Y12+%2 (A4S)

The transform third mode y~ is given directIy in the
iteration. The procedure for finding the other components
(}tl the right-hand side of equation (.~4S) is as follow-s:
Olmpfment ya, by equation (A44), is

(A49)

Component yu is known when Y= is know-n because its rela-
tion to y~ was established pretiously in connection with the
transformed-second-mode caIculat ions (see equation (A24)).
Component y,, is then found by equation (A43) as

(A50)

By analoe~ with the foregoing case, the true third mode in
the complex-eigenvalue problem is found as follows: The
limiting value of the second sweeping function is (see equa-
tions (.A31) and (A32))

The limiting vahle of the first sweeping function is (see
equations (MO) and (A.. 1))

()tf?b(”)
lim ‘ti?M‘R)= ‘]im ~ ?f?l
n- n-. A

(A52)

The quantities analogous to y,, and .y~ of equations (M3)
and (A44) are, for the present case, lim Wtz(n)and Iim v~(a’.

n-m X+.

The Iat ter quantity is obtained from the relation anaIogous
to equation (A49) as foIIows:

Em WiM(=)
:i ‘u?&c=’=-;, ~ ‘EC’’’’(%=WJ’-WJ‘A53)——

L’a

The relationship of lim W1l(=land ~im w~(a] is obtained from
n+. n-.

equations (AZ6] and (.WII of the section deali~m with the
transformed second mode. Thus,

‘E’W’’’(%=%U”U”
Q. (.423)

(A54)

The quantity ana.Iogous to y,, of equation (A43) is, for the
present case, lim v,,(’) and is obtained by an equation

n+-

:’7?4s3—s4—--—22
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analogous to equa.t.ion (A50) as folIows:

‘EY4’-(=)B1W’ ‘A55)

‘Me exact shape of the true third mode W8is given by the.
sum of equations (A33), (A53), (A55), and (A54), which is

lim (waa(”+u+Wti(s) +Wll(s) +w,,(m))=lim C*’daw* (A56)
n+ - n+m

FOURTH AND HIGHER MODES

llxtensions of the proofs to modes higher than the third
can be made in a manner similar to the foregoing proofs. By
this means, the iterative transformation procedure can be
proved, under the awmmptions stated at the beginning of this
appmdix, to be convergent for alI modes and eigenvalues.

CASES OF EIGENVALUES HAVING EQUAL 022 NEARLY EQUAL MODUL1

For a representative CSSC.,suppose that

p,]>[c,l; Icd>lc,l>” ..: (A57)

m~d that,
[C,l=lc’,1 (A5s)

or that
\c,l= p,l (A59)

lTndcr conditions (A57) and either (A58) or (A59), the
assumed and derived modes after n few cycles of iteration
will he virtually M fo]Iows (see equations (.417) and (A19)):

Wd(n) = @-1b9 (W2—W~+ C#-’b8 (W8—W,) (A60)

wd(”+l) = C2’b9(WZ—W])+ CSnb8(Ws—wl) (A61)

If ]C91is only sIightly greater than [C8), the second terms on
the right-hand sides of equations (A60) and (A61 ) become
negligibly small very slowIy as n increases, even though
they do become negligibly small M n apprmc.hes infinity.
If [C*Iand {C*[are cqua~, these terms never become negligi-
bly small. Thus, the probIem of circurm-cnting this slow
convergence or apparent Iack of convergence arises.

A satisfactory method for coping with these conditions is
to combine linearly the results of the last two cycles of the
series of iteration cycles that have hen performed. For best
results in an actual problem, not Iess than the third and
fourth cycles should be used for this purpose in order to
rcduee as much as practicable the effects of d highera-der
components.

The foIIo-iving formulas for combining the results of the
last two cycIcs are based on the assumption that the assumed

and derived modos in each of tho cycles contain only com-
ponents of the types in equations (A60) and (A61).

The two com~nents (with shapes w2– WI and W—wl)
cIearly appear in the Iast cycle in proportions &iMent than
in the preceding cycle. (Tho proportion in each cycIo is a
complex function of the spanwise coordinate.) Because of
this diffwing proportionality the results of c.ycIes n —1 and n
can be linearly combined so thtit the combined functions
contain only one of the components Wg—wl and W—WI.
Accordingly, the ratios of both the flcxural and torsional
components of the combined functions at d stations should
bo cqu”d ta each other. ln aIgebraic terms, this statement
mcllns that

(rw=z(%)+Wd(a+l)

TW=2 )(M)+wd(m) ~=R (A62)

in which r and R arc (complex) constants, and the subscript
S designates that the ratio may be evaIuatwl at any station
S, that is, that R has the same value for all stations. All w
functions must be the same typo of component, c.ithcr flcx-
ural or torsional.

Since S can be w~y station, the equality

(
~w=2(n)+Wti(a+ll

)( rwti(n)+w=2tn+n

)rw=a(’-’) +wa2(n) ~= rwd(s-’) +wti(m) ,
(A63)

exists, in which stations 1 and 2 must be different or may
be the same, depending on whether the w functions ou the
Ieft-hancl side are the same or difYc.rent types of components
than those on the right-hand side. The two values of r
that satisfy equation (A63) are

~(n-l), (?J+lJ

J(

A(n-I), (n-En 2 ~(a), (tt+21

‘=— zA(n-l), (rO * )z~(u-l), (s) ‘—A(m-1),( (A64)

in Which

W2(U-1’)1 (Wd(n-l))fl
A(II-O,(?I)=

(w.,(x)), (w@(@’),

(Wa,q (W*(=)),
Am!,(n+l}=

(%2( U+1’)1 (%2(*+1))1

(w.,-’)), (w.,-’)
~4(zt-l), (n+l)=

(W2(n+”)l (Wa, ‘=+l’)l

The cm.responding values of R arc

(A65)

(A6tl)

(A67)

A(ts), (a~l) A(n-1).(u)
I=—

r
(A68)
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These values of R are equaI to C2 and C~, and the corre-
sponding values of r, when pkmed in the expression

r~a (m) +Wd(=+u (A69)

give modes of the shapes w~-tcl and w—wI. When [CZIis
nwar~y equal to IC’ZI,the appropriate set of R and r to give the
lower transformed mode w*–w3 is evident-. When IC,I and

Idal are equal, the mode obtained by eqm.tion (A69) with
either value of r mfiy be used as the transformed second
mode, but the trends of the eigcnvalues that have been or vrilI
be determined at other dues of the reduced frequency k
may be used as a guide in making the selection that fits the
trend.

In actual computations, one further cycle of iteration be-
ginning with an assumed mode giren by expression (.169)
should be carried out to a=ees the extent to which the func-
t ions wti(u-l>, W=2(”],and w~@+u are free of all except the
two components of the types appearing in equations (A60)
and (.46 1). If the ratios of this c@e are not remnably
constant, the unwanted components stilI present- hare to be
removed by carrying out another cycle of iteration and
n-gain applying equations (A64) and (A6S).

The method just described is clearly applicable in the
general cases lC.l=[C=~ll or IC=I=lCfiI1.

Eigenmlues having equal moduli include the special case
of identical eigenvalues. .4s a basis for discussion Iet it be
assumed that.

:Cli>lc,[=lc,l> [c,!> . . . (A70)

and that.

C,=c,=c’a (A71)

The significance of the occurrence of these two identical
eigenvalues is that the wing system may oscillate with the
same frequency and artificial damping in any of an infinite
number of modes, any two of which are linearly independent
of each other and of the first, fourth, and higher modes.
This infinite number of possibIe modw (all correspondi~ to
(“’=; are the infinitely many linear combinations of two
basic lines.rIy independent modes that are necessary and
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sticient in combination with the fhat, fourth, and higher
modes to describe an arbitrary displacement of the wing
system. ClearIy, onIy two linearly independent modes cor-
responding to the doubIe eigenvalue C’fi are required for
analytical purposes. These two me designated w and w as
before but with the reservation that uk and m must be
derivabIe as two cMering Iinear combinations of a single
basic pair of Iinearly independent modes that aLw correspond
to C’a.

Equations (MO) and (Ml) are replaced in the present case
by

lim Wa@~D= lim C~’ [bz(wz–w~)+ bdw,– wt)] (A72)
n~m n-

and

(.A73)

13quation (A27) is replaced by

. lim Wbl(’)
~ wd(n~l)+n~-
m+m c, ‘!\: ‘H=(b’w’+ “mJ ‘*74)——

C’a 1

The transformed second mode (equation (A72)) is in this
case a linem- combination of the first three eigenfunctions,
and the so-caIled true second mode is actually a linear
combination of the second and third eigenfunctions.

If the iterative transformation procedure is now applied
in the reguIar way to determine the transform third mode,
the third eigenvahe, and the true third mode, the results
wUI be as folIows: The transformed third mode wiII be, like
the transformed second mode, a linear combination of the
fit three eigenfunctions but will be linearly independent
of the transformed second mode. The so-called true thir@
mode will be, like the so-calkd true second mode, a linear
combination of the second and third eigenfunctions and will
be linearly independent of the so-called true second mode.
The results wiII ako incIude a second determination of the
double eigenvrdue Cn. It may therefore be concIuded that
the iterative transformation procedure is valid and sufficient
in all cases of eigendue muhipIicity.



APPENDIX B

THE COMPLEX STIFFNESS FOR BEAMS WITH STRUCTURAL DAMPING

The familiar concept of a complex form K(1 +ig)s in
simple (one-degree-of-freedom) vibrating s.vs[ems having
st.ructurd damping may be easily extended to continuous
vibrating systems such a-9 beams am-l airpIane. wings. The
quanl.ity K is the elastic-spring constant, s is the diapla.cc-
me.nL, Ks is theclast,ic-spring force, and Kg8 is the strut.t ural-
damping force.

For a beam in flexure, the stifhess of the fibers is given by
the modulus of elasticity lZ, which is analogous to the quantity
K for tlw spring. The elastic strws at any point of the cross
sfwt.ion is given by @ where e is the strain which is analogous
t.o Llle displacjemenL s. Then the com@ex stress at any

point of the cross section of a lxwm with structural dfimphg

is E(I +ig) c, The complex bending moment corr~pondhg

to this stress, o~tlaincd in the usual way lJy integratkm of

d~y
the mo”me.nt of Lhe stresses over the section, is El(l +ig) ~z.

This result leads h the concept of a complex stiffness
131(1+ig,) for beams in flexural vibration with structural
damping, Wnilarly, the complex stiilncss of beams in tor-
sional vibration with structural damping is W(I +%*).
The subscripts y and @indicate that Lhc structural-damping
coefficient y may ha Ye a diffwvnt value for torsional vilwa-
tions than it has for fhxural vibrations. Both g~and g~ may
be functions of tho spanwise position z.

APPENDIX C

FORMULAS FOR EQUIVALENT CONCENTRATIONS AND INCREMENTS OF TORQUE

The formulas used in the mlmericaI examples for ccm~-
put.ing equivalent c.oncent,rated loads and curvatures me
those that have been derived in references 7 and 8. For the.
conccwt.ratlion at an end station the formula is

(cl)FI=& (7PI+6PrPs)

At an intermediate station

F2=+ (p, + lop:+ p*) (C2)

The sigmificrulcc of Lhc quantities used in forrmdas (Cl) and
(C2) is shown in sketch 1.

---- Disfribu ted-loud curve
1.+-

‘a 43

~ -

++,--{ .

q g

Sketch1.

These formulas me based on the assumption that the
distributed-Ioad (or curvature) curve is a series of second-
degrce parabolic arcs. When applied to distributed fle.xural
loads, the formulas give concentrations which produce the.
same bending moments in the wing at aI1 the selected stations
w the distributed load. The formulas maybe correctly applied
to distributed torsional loads only if (2J is constant over each
bay. In this case the formulas give concentrations which

324

produce the same torsional disphmemcnt at aII the selected
stations as the distributed Ioad. For a station placed at u
discontinuity in ordinate or slope, formula (Cl) must be
rtppIied to both the left and the right of tk slation and the
results added.

The formulas for obtaining incrcmcnta of area I.mncath u
curve of distributed torques arc derived in reference 8.
These formulas are based as before on approximating second-
degree parabol~. They are given hem in a slightly diffurent.
form which is beLter adttptcd to present USCS. Thus

A,=: (g,+4yz+@)–; (gl–@ (C4)

where the” significance of Al and AZ and of gl, q2, Rnfl ga is

S~OW~ by sketch 2.

Increments of r. ~- . . Didrjtded-hd

torque ‘, ‘ --- /“ cur vu
.

<%,
‘.

‘<

‘Az

~~ ~= qa

The ordinate at a discontinuity should not be used m the
middle one of the three ordinates selcctcd for usc iu formulas
(C3) and (C4). The fommlas are valid only whw-c the three
ordinates are connedcd by a continuous curve.
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TM31.13 l.—ITER.\TIOX TO OBTAIN FIRST COUPLED MOI)ll

ICommon factors for earh column are
/ I 1 I

~

5 4 3 2 1
BtaLion

Flexure: (a] Frost cycle

- -. .... . . . *

1

g/#)

f)

1.000

.568

.194

.054

0

-

33, 6

19.10

6.52

1.82

0

-

f&
P
-

0

0

0

0

o“

-

+1-
*Y Q

P

3X6” 1430 14.30

19.10 il. Z6 19.26

L 82 2.06 1.13

0
i I. .... ., .,--., . ..-_T.

p

17.95

-

-

14, 30

19.26

24.51

-

14.30

33.56

as. 07

59.20

-

“f
——.

11 12

A,lt M

14.30

33.56

31.82

3245

-
.- 1..

-

0

14, 30

47.86

79.68

112.13

-

13 “

a

-

Vby =
m

o

14.30

47.86

79.68

112.13

-
—. .-

Torsion (with GJ constant over each bay): (a) Frost cycle

. .

‘(o‘gkh ‘~:.“:.* + -:~’
b%
yd MZ7 ~ X&> M%’ &

P P m
.

0 1.397 “o L 397 0.594 0.594 0.59

0 .794
0.69 0.59

0 .794 .80CI .800 .80
1.39 L 39

0 .271
{.

o .271 . :;:
.219 _“l~ 68

{ .054
0 –14. 41

0 .07’6 0
–13. 02 – 13.02

.076 .086 .047 .05
–12. 97 -12.97

0 0 0 0

. +. —...: ,.. :-.... ... —- -. .- .. .... . ; .-

—
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FOR k= a FOR WiX-G WITH C’OX-CEXTR.lTED 11.WS

tiwn under the column headings ]
.,
.,i t + I I—— .

,’,1

.5 4

(a, First cycl+Continued
— -. .

I I t I
14 ~Lila\17

II ils’ L’)!

3 2 I
Station

(b] Second cycle (C] Third CyCk

1

~lm

b

r

L 000

.570

194

.055

0

2

p+n

b

1.000

.569

.194

.054

0

I

T281. !30 281.90

160.36 2S2

—.—

K’. 90

r17. 53
\2Y. 20

W. 75

W. 60

..—

280.27

159.37

54.37

15.22

0

280.27

280

280

28?

120.90
15.90

105.00
(17. 53
116.01

7L 46
43.70

27.76
27.76

281.65

160.24

54.73

K 33

0

120. !30

105.00

39.15

L5. 22

54.75 282 282

la 33 279

0

(b) Second cycIe (c) Third cycle

2
——1 3 I 4

1 I
1 I

@l(a)

–0. 00633

–. 00662

–. 00729

–. 00364

0

----

----

----

----

–L 780

–1. S61

–2. 048

— L 022

0

300

299

297

297

__—

0.59

1.39

—i. 15

–7. 11

–L 786

– L 866”

–2 056

– L 026

a

— .—

–1228 – L 662

– 12.87 – L 742

–14. 26 – 1.930

–7. lL –. 963

– o. 005!31

–. 00622

–. 00689

282

282

282

282

282

–. 0034+

o0 I o
.,

-=lk%?’—=38.7 radians per second



TA13LI? 1.—1TERATION TO OBTAIN FIRST COUPLED hIODE FOR k= ~ FOR WING WITH CONCENTRATED MASS—Concluded

Torsion (wilh GJ variable): (a) Fkt cyolc

1 16

.$,m

6 I 75 14 15 17
I

AT TAT ACP
St-.tim]

WYd
‘P

A#?37 ~

GJP
.b> ~
EIp

– 12.25

– 12.85

,, .-, ,.
._ *&~’

—7. 10

0,

-—

——.

0

0

0

0

0

L 307

, 7’J4

:&l”

.076

0

1.089

.625

.090

, 015

0 0 I o

0 1,0?3 L 09

1

2

3

4

5

0

0

i

o

0

1.897

, 7Q4

,,, .,
. ~1, \

o

1, 089

.,1 ..’

‘N 014

1.704

1, 719

-1.660

-1.741

----
1, 089 0.60

L40,
I

“1

-13.02

–12. 96

0.60

L 40,,, ,.
!’: ,

–7. 15

– 7.10

----
!,, ., ‘!

-~_> i.-
52~,,, ,’

!

, 164
[“- 1:, 08

““l I

.1: ~1
1, 01;

– 13.07 -13.07-i14 68 –l. tio

– 14.68 –12 08 –12. 98

–14.63 – 1296 –12 96

.076

0,

–, 962

0

. ..-
.028

i ,,,,

1

1

I

. ,, ,,, :...’. ,!,
., ,,,.

., .1 ,1;1!,,,. ,.,’,, :,, ! ~ , ., ,,,:.



TAIJLli 2.—1TERATION TO OLlrl’AIN ‘1’1L\NSlrOR3HlD SllCOND hIODIl FOR k= ~ FOR WING W1l’Fl CONCENTRATED M,W3S

[(!OIIIIIIOl)fattors for (.acl) CCJIIIIIIIIlbrt. KiVOtIIl,,dor [1](* C(,lllllln lhvuiiu~x]

A-–J--–O ----- —J—---- !

3 2 14
W9tion

(IJ] Second oyole
.-., .. -...!

2 I 3 4 I 5
———

sLllLi(Jll

1(A)
2

:
rJ

—.—

1
——

I@

b

.—

0
–, 281
–, 2h2
–. 0U4
o

——-

rl

UR9(Q
ha(s)

———...—

o

nla9(*
~yai(a)

I

_L
$P d

–4,5 30, 2
–0. 8 36, u
-; fi 38, 3

Oyole

b

174, 1
w 2
33, n

~ 48

0
–, 092
–. 767
–, 2t)3
o

I

24, 4
24.2 24.3
24, 1

–411. o 411, 0
–_2;i5 ; 234.2 –1:, 3 26, 4

80.0 -10, 7 26, 0
-30:2 22, 4 -; 8 26, 0

0 0

0 - 46i5, 8
–, 820 – 28.5.4
–, 882 –112,0
–, a40 – 33, 8
0 0

46hm8
265, 4 – 2:.0

go, (1 -21, 4
26, 4 –$4

o
I

(b) Bwoncl oyole (o) Third oyolol’ort4iou: (a) lVrE

1 2 I 3 4 I (5

Btation

1
2

!
<r). ,.1

——1 ‘ I -.—

1
——4 ——-L__.~——

gp

—.

1,000 24, 04 -2 m 22, 34 22, 34
,997 24, 06 -2, 72 2223 22, 3

:; :: – 3, 00 22, 05 22.3
: & –1, ,50 II, 01 22, 2

0 o“ o 0

.
1, I

I

1:00: Ist 88 – 1, 10
13.38 -1, lfi
13, 40 – 1, 28; ;;;

m 70 -, (I3
o 0 0

12.28 12, 28
12, 2a 13. m
12, i2 10.44

(i, 07 l& 85
0

I



T,\131.IC 8.—ITERATION TO OBTAIN TRANSFORMED THIRD MODE FOR k- rn FOR WING WITH CONCENTRATED MASS

[Common factora for eaoh column are given under each column headingl

$~. I I

g’

Flexure: (a) First oycle

4 3 2
Station

(b) Seoond oycle

1

(c) Third oycle
—

2 6
I

76

—1

ybul
Station

I I I I I
—1 ‘ ‘ ‘

1

b I I &rd
EIP b

1 1 #

1 I
1 I I I I I I

1 (A)

:
4
5

0

4
448.1 –44a 1

–254. 8 –1! 1 ~. 6
1: % %: ; – 87.0

5.0
–IL9 5.1 5.1

3 3; o –24.4
o“

–; 7 1.9 4.9
0 0 1

41-& : –404. o
–230, O –: !3 :.9

91.3 –7a6 –6. 3 6.5
26.9 – 22. –2 5 2.4

0 0 0 0

0
LO(M,

::2
0

6.9
7.2 7.07
7.1

I

(b) Saoond WC1;

I

Torsion: (a) ‘H& oyde (o) Third oyole

Station

1 (B)
2

:
5

---1’’”

l--k0’ –9. 4 2 i37
–9. 50 268
–9. 72 206

: %% –4. 85 L 48
0 00

WYd
RIP

6.89
6.85

!M
o ho –9. 46 2.56

.%% 1;72 ~;:
0042 –4. M 1.47

0 00

o –15. 70 2.84 1295 0
-.083 – 16.81 2.90 12, 88 .13 –1.6
–. 304 – 10.03 3.26 12.80 .03 –. 1
-. 150 –& 00 L 63 g. 40 03 –. 2
0 0 0 o“

6.90 0
6.86 .(M
6.81
3.41 :::
0 0

0
.03 1.3

7
:%3 6

0

10.0
5 7.15
7

I

‘.

,!i

‘1 !



TA 13LE 4.—AEROI)YNAh11 C-1 NERTIA FOltCIt C:OEFFIL!IEN’IW FOR VAItIOUS VALUES OF k FOR “EXAhl PI-1’; WING

[Ccwnmon factara for each oolumn are given under the column hearling~l

Flcxure
. ..—-— .—-—

I
..-. .—. ... . . ..-

PR+k PRV Pl”
I

~d
F

-1444
–112 5

- 7i3, 2
–w 7
–23. i?

-% 76
1, 397

Id
F

27, h
30, 6
31.0
31.2
320
3%0
33.6

P

0:::6

, 1443
1590

;24
.50

– loa 3 92. G
-8.27 02, 6
:.$: 025

926
1.35 92,5
2, 2!3 9% 5
0 02, h

- m. 6
– 7r), 6
– 711,II
-75,6
–7G. 6
–76. 6
–75. flom

TornIon

01, A“

I b7d

I

w
;&

P

0: :y 3.67 549
2.62 51.4

, 1443 2, 36 37, 6
1590 z 28 320

:24 1, 08 I& 24
‘, rio 1, 623 10, 74k

m 1, 307 , 1400

–+; ::

-4:05
–3,60

, -2, 18
–, MM
o

6& 3
11.42
a 4$
7,24
3.07
1.143
0

-76, 6
- 7S. 6
-75.6
- 7h 6
-75, 6
-75.6
-75, 6

—. ———.
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Station

1

2

3

4

5

1
I

2
I

1..000

.444

.111

.028

0

b

o

0

0

0

0

‘L’.4BLR 5.—ITERATION TO OBTAIN FIRST MODI? FOR

/
.5 4 3 2 1

Station

Flexure: (a) First cycIe
. --- ..

3 I 4, I 6 I 6 7

3i o

13.77

3.44

.868

0

—

Station

1

2

3

4

5

h;&

T
.-.

0 0

0 0

0 0

0 0.

0 0

Toreion: (a) First cycle

.> -.. ..=.

T
o 31.0

0 13.77

..
0 & 44
,.

p“ .868

D o
.

[Common factom for each column aro

..”. r-”” -

8 I 9 10

=i=
( 3.16

{
3.16

1 L 22 .07

-IL
10.27

I
P

..

0 0 2.36 0 0 0

0 0 L 048 0 0 0

0 0 .262 0 0 0

0 “ o .0660 “:0 o 0

0 “’o 0 .0 0 0

.,
,.

-—=

1-
hib~y~

P,..

236 0.939

L 048 L 0f12
I

4

{
262 “ ;!

0660 , .077

0



.tii ITERATIVE TRANSFOR,W4TION PROC!ED~E FOR NUMERICAL SOLUTION OF FLTJTTER PROBLE31S

k= 0.1443 FOR WING WITH CONCENTR.4TED MASS

given under the column headings]
/:
‘, I I—.— —

:;!
●

,./
5 4 3 2 I

Station

la) First t@e-Continued

13

..——
-1

17 I 18 I 19 2012 14 I 15 16

a I Iz? T“g WP

—.- —-...—————-

ha-y I—.
HP c

21S. 6

128.3

-IL 5

IL 5

0

95.3

8L s

30.0

-IL5

0

1234

0

12.34

39.03

6L 11

S-L 03

1234

26.69

9a 3
13.5 13.5

SL S
r 145

{
14.5

1 23.2 127
5L 6

6L 5 33.7
20.9

3a 2 20-9

12.34

26.69

40.79

41.34

1) 14.10

I 1-55

39.03

22. 3s

2262
61.41

8403

i ~,1, i 1° ildlzb 17

.-

?.8%’ I——
.EIp C

–o. 510

–. 633

,
0.939

L 092

0.939

1.092

.240

.051

–3. 77
a 94 0.94 .

—4 71
203 203

–6. 74

– 6.18 – 3. 3s
–X36

– 6.14 –3. 36
0

a 91

2.03

–a50 o –. 912–&21

.042
–6. 1s

–& 14I
.042 –. 455

0

8
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TABLE 5.—ITERATION TO OBTAIN FIRST hiOL)K FOR

Ilexure: (a) First cycle-Continuad

22 +-~y 4’ ~“’ - +k “ ~,,.

P@I

—,

o

0

0

0

0

0

0

0

0

0

hyd

– 10.82

—4. 80

–1. 201

:–. 703

0

Station

0

0

0

..0

0

– la 82 .–331
I

–4, 31

– 4.80 –5.00 –5.00

–1. 201
{

_;; ~g

{
– 1.099

~. 426 –. -234
.. ..

o.
~.,

I

o

Torsion: (a) First cycl~ontinued

0

0

0

0

0

0

0

0“

0

0.

4.05 o

1.798 0

.450 o

.1143 0

0. - 0

4.05 1.612

1.798 1.874

.1143 .133

0
I

o

–4. 31

– 5.00

–1. 333

–. 193

.-.

24
I

25

1.612 I
1.874 I
.412 0

.073
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k= 0.1443 FOR ‘WING WITH COX-CEXTR.4TED M.4SS-Coutinued

(a) First cyc&Concluded
— . .

[
32

I“L135!36’1 37138i ,— ~+ 41

1-1 A.~fr 1 Jfl
!- ~iA#

a a a @5 gfJ~ + iV@

I“b
md” + ivuro

.—

–4.31

–9. 31

– 10.64

! – 10.83

I

–431

–9. 31

–5. 84

–5. 95

0

–4 31

– 13.62

– 19.46

–25. 41

0

–4. 31 –4. 73 —4. 73

– 19.46 I
t

– 19.46 1,- IE 67

–25. 41 ; –11.70 I –6. 41

–70. 38 I 21&6–70.3Si
–3L 12 –31. 12

–39.26 ---------------
–26. 39 ~ –26. 39 I

I I -12S7 I 374–116.Oi

–17. 08 1 –9. 35 !
_a52 I -a52 ~

–&41
~ --- -----------

I [o!

[aj First cYcle-ConcIuded

0

M%
—G

P

1.612

1.874

.Wo

I .073
I
I

—..—— ..— —

II 9.51 L 2S3 -.----------
L 612 1.612 L 61

7.90
3.486

L 070 ------------
3. 4S6 3.49

441 -597 ------------ ,

3. !3S6 X 9S6 2 Is
2.23 .302

4.059 4.059 Z 23
0,0,

I
I I I !

t
—
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TABLE 5.—ITERATION TO OBTAIN FIRST MOI)E FOR

(c) Third cycleFIexure: (b) Second cycle

1 I
2

I ..-“g 1
I

2

—
5 -.

Ration

:

!
5

4

~@l + ~vu(a-r+”
I/da + Zi@,

ul’r~ 1.Ww

1“

XO’by 1——
EIP C

d
b4’y’ 1—.:
EIP C ~,.

● +.,
263.0 – 83.2@~
-------------

270 – 84.9i .
--------- -- +..

: .:
: ..T.

b

o 2!5io
. Q ( 1.?9.7

51.2
0007 .14-.4

0
0.

I
1.000
.503
.189

052
0’

–m 22
–46. 67
– 15.42

–4 22
“o

1.000 0
.569 .0020
.194 .0028
.054 0012

0 0

207.5 – 8289
1:; : –46, 47

–16. 33
14:6 – 4.20
0 .0 .,,

Tonjion: (b) Second cycle (c) Third cycle

a
I

4
l.. I

3 I 41 5

+----i -“
#,E(a) ,$Um ~=(’1 4*(4)

Station

X& 1—-
EIP C

M-y I—-
EIP C

f

.
. .

–o. 00660
–. 00680
-.00716
–. 00358

.!.

– ~ 00382
–. 00407
–. 00457
–. 00228

0

- —

– 1.407
– L 537
– L 829

–. 912
q

.,
353+ 12. Ii 10.0046’3

.00358

.00126
00064

o“

1.601
1.353
.773

~. .392

..

0.00399
.00300
.00068

00036
0

– 1.570 1.594
– L 690 L ~;~
– 1. f)63

–. 082 :387
0 0

----------
414–55. Ii I
---------- -...

+7.
:+::



.4X I’L’EFL4TIVE TR4NSFORMATION PROCEDURE FOR

k= 0.1443 FOR IYIXG WITH CONCENTR.%TED M.WS--ConcIuded

fc) “~hird cycl-C’oncluded

IWMERICAL SOLUTION OF FLUTTER PROBLEMS 337

(d) Fourth cycle

I “ml’ l’l’l’l’
6

I

I
b

A& 1—.
EIP C I

267.5 –132.S9i t

ml

L 000 0 26S. 6 – 8Z 56 26S.6 – SL58i I

------------ t .569 .0030 153.0 – 46. 2!3
2tlS-S3.2i

------------
.0027 52.4 – 15.28 , 270–t32..5i 269–132.8i

------------ i ; ‘;: ()-0011 14.7 –4. 18 ------------
0 0

~r ] TIlird q cleConcluded

I

282–71.5i
I------------

2s2– 7Y.si i

------------ I

I

.$*(4)

I

#11(*

– 0.00704 0.00379
–. 00720 .00231
–. 00751 .00052
–. 00376 . 0002S
o 0

(d) Fourth cycle

3
I

4
I

5
I

6

1 1 I

A& 1—-
EIP C’

–L 591 L 5S9 270 – SO.8i
–L 711 L 340 ----------
–L 977 .758 269 – S2.4i 270–sI.5i
.–. 9ss .384 ----------

0 0

.— 1

– *2.2 1 39.7
9d=* —– —=91.6 feet per second

‘–0-305; ‘1– 30.1443
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TABLE 6.—ITERATION TO OBTAIN TRANSFORMED SECOND

[Common factors for eaoh column are

5 I I
,..

●
I

<
. . . . .

ii 4 3 2 1

Station

Flexure: (a) First cycle

+ ““-
1 2

Station k2E(o vad~

I

b
how’ 1—.
EIP C

X947 1
——
EIN C

–818. 4 41.38
–468. 8 23.48
– 161.4 7.90

–45. 4 219
0 0

8i8. 4
“:_fi 38” .: O---- o“

464.5 2.1.8
1:; ;

–4.3 . --- . - . ---—-----
-5.7 –2. 6 :; ------------------
:; 31 –. 9 .88 ------------------

0 0 0,
-.
- ... . . .

Torsion: (a) Frost oycle

I I.-

1. Ocm o 28.76 -4.45

.g: ....;: .A .~-:. -:” “-,. ;. :4.. .~-: >:, :,-

+;;” 3..35 23.14 – I. 10 23.r4– I. loi
.875 26.25 –3. 89
.529 :

256
19.42

20.46
–2 35 –6. 12

– 1.33 ----ii-i ----------
,73 13.30 – 1.62

274 0 0.92 – 1.222 –3. 06
0’ 0 0“

-379
0

6.86 –. 84 -_.-:-: -::?:--
0 0 0 0-.

-.



.AX ITERATIIZ TR.%NSFORM.%TIOX PROCEDURE FOR

MODE FOR k= O.14K3 FOR WING WITH CONCENTRATED MASS

given under the column headings]

FWlfERICAL SOLUTION- OF FLUTTER PROBLEMS 339

/./ f
c t l..

(j
4 3 2 I

~. tation

{b] Second cycle

0 ~ o ! -8’8.~ ~ 104.65 88&5 1 -~:m;5 [ ‘ o- !
–. 18s ~ .064 , —510. s 6L 60 500L : –: 3 37–11.2i
–.117 .0’30 – 177.0 ~ 22.28

I –. 041
– 17:7

I

–4, 5 2: 43–6.li

~ i 038
–50.0 6.45 4&i –464 –1.(? L81 ----------------

o 0 0 0 0
1°

0 i
1— .——. .—

(b) Second cycle

.—
1 , I I i j

1.000 0 30.so –6.92 —5ss 4.05 2-L 92
–. 0153 f

–~87 ; 24.92 –2.87i
. ~~6 28.36 –6. 33 –6. 12 3.21 22.24 –3. 12
. .>17 –. 0426

:-----------------
21.60 –4. 59 –6.61 L 24 1$ ;: –3.35 ] 26.2 –3.8fii i

. Ws –. 0221 11.01 –2. 36 –3.30 ; 63 –; 73
0 0

Iolo Ioto
0.

~--- ------------

1
i. 1— .-.— I
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Station

1 (A)
2
3
4
5

—.—

Station

;
3
4
5

1
I

2

b

1

0 0’
–. 271 .149
–. 199 .161
–. 071 .065
0 0

I

T.4BI,E 6—ITERATION TCI O1+TAIN TRANSFORhf K13 SECOh’D MOIJE

I?lexure: (c) Third cycle

,... .

A..-. “..- :“ .“ :.-.: ,

3.’ :4..
~ :.6

3

7 8 9
,.-~—. -. —, ... ...,
%.

~b~(a) VU(8) um$~ ““;bll(Q jdE(4) lfdx(~
U~R(o + i~~(o

1 :. vam~~ + iw~~
. . .

,.. I .
–931. 9 156.25
–537. 2 92.18
.– 187.2 32.98

– 53.0 9.60
.0 0

h~by 1——
EII.L C

931.9
530.5
18L 2

5} 8.

.,
.-.7

–’-;: :5
–:.7

– 27.7 –6. o
–7. 41 –2.2

o 0

1X&y I ‘——
EIP C

1 -.. b



1’ b

!
1 0
1 –. 2s1
I –. 252
4 –. 024

I
o

—

N-Y I——
EIP C

o –941. o

$’ ‘*! ‘:$; ~’~

165.58
.184 –543. 3
.165 – 190.0

OG9 –yo
o-

A& I——
EIP Ci 1.0000 33.16 –&75 –6.03 4 6s

I
27.13 –4_07 27.13 –4.07i

.001 –. 0256 30.70 –8. 15 –6. 33
:;: I ;;;: –4. 35 27.1 – -1.05i

624 –. 0749 23.92 –&30 –6.9s –4 57 27.7– M12i 27.3–4,05;

I ; 322 ; 0384 012.20 –3. 24 –3. 49 ~88 ~ %71 –2 36 27.5 – 4.Oti
o 0

I
o

4J= 121.0 radians per second; g~= – 0.1308; ~= 280 feet- per second



Station

1 (A)
2
3
4
5

“--1Station

~

1 (B)
2

:
5
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T.4BI,E 7.—ITER.4TIOX TO OBT.41N TRANSFORMED TIIIRI)

[Common factm for each column mm

0
0
0

:.

1
I

2

_—l —. -——

– 73:82 1
-43.43
– 15.60

—4. 45
., 0.

::*;” I ;;. & ~ ‘o 010 0
4L 05:; –2. 7 L 37 11.2 – 1, 01

–.7i 5 13.26 –2 3 1.45 11.6 –. Ml
y“20. L z 59.-
. ..0 ;. o ,- %9, .0.

57 4.4 –. 29
0 0

.“

11
i
I

mirl’”‘“
.-----m--.-.--

11.6 -O.S!)i

--------- .---e-

Torsion: (a) First cycle

.-
..-
-,

– 10.”24 1. “687
–la 30 L 592
– 10.60 L 067

–5.28 564
0 0

I

,..
.-

2.32 – 1.897 ‘ 7.92 0.210 0
10 “ “4

z 45 – 1.551

i

7.15 –. 010
2.72 –. 742 5.05 -1031 “--. ------ .---w “-

–. 445 _–Z: ;: –: lz(j -------------- .

;36 I 2378” 360 ? 23’ -;32 3’45
--------------

I
I . I I I I , +“ ,.

. .

.
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llODE FOR k= 0.1*43 FOR ‘WIA-G lTITH COXCEXTRATED M.4SS

given under the cOlumn headings]

/
‘/ ‘ —a I I
,,.i -! 3 ~ 1

Station

[b) ,Second cycle

h

48A o
296.2
113.0
34.4

0

,—-— .—-L

~o o
–. 060 –. 0019

I –. 241 –. 02891
–. 113 –. 0125

i. o

–83.49 \ –4840
–48.57 ; –2748
–16.82 ; –93. 9

–4?3 : – 26.3
0; o

1

xo4b7 I
——

EIP C

83.49
46.14
14.80
x 97
0

I My 1—.
EIP C i

Ih) second cycle

t I I I I 1 I I

– 15.99
– I& 02
– 16.00

–8.07
o

L 640 3.12 – 2.392
1.521 3.26 – L 938
.858 i

4i2
~:: t :::~

0.
!O1O

I
1 I

o 0 0 0 i
–4. 5 2-08 16.9 –. 35 17.5–o.13i
–X8 223 15.3 .21 ~ 15.3+ 0.21i
–1.4 .8$ &6 12 i

o
--------------

0 0 i
t

I I

I
I

1287 0.752 0 0 t

IL 61 .358 —L 15 –. 059 -------------- ‘
8.23 –.460 –4.18 –. 474
A 23 –.342 t _~()~ —. 215 I ii ;:);;::
o 0 0

1°
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TABLE 7.—ITERATION TO OBTAIN TRANSFORMED THIRI) MODE

Fkxure: (c) Third cycle

3:“I-4+ 6
I

7 I 8 I 9 I 10 I 11 I

St.at,ioll

X9%7 1——
EIP C

H
ho%’I
%Z

o
–. 29 12.2+ 0.16i

19 14.l+o.lfli
o“ 12.7– 0.06T’
o

b

o 0
1.105 –. 038
1.000 0

431 002
0“ 0“

I
515. Q – 102.86 –515. 9
311.8 – 59.83 –293. 8
118.5 – 20.69 – 100.5
35.2 –; 93 –2; 2

0

1 (A)
2

10286
57.3
I& 51

5.00
D

o
–! 6 2.21
–3. t? 2.37
–1.5 93

.0 o“

1:4
14.1
5.5
0

3
4
5

Torsion: (c) Third cycle

51617181 9110” III”””

-H
1 2 3 ‘4

+am(s) +&(l) $bEo) ~uai ‘

——

.-

Station

...

I
o 0

–. 075 –. 002$
–, 27a –. 0272
–. 134 –. 0122
0 0

– 16.73 1.942 3.26
– 16.7’8 1.808 3.44
– 16.72 1.053 :~

–a”45 5770..
0 o“

–2. 658 13.47 0.716
–2 174 12.17, .300
– L 037 &63 –. 533

–. 529 4.43 –. 279
0 ‘“” o 0

t

I (B)
2
3

0
–:. 17 –. 066 15.6+ 0.30z’
–4.27 –. 517 15.7+ o.33i
–2 11 –. 231 lS.8+0,29i

o 0
4
.5
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FOR k= 0.1443 FOR WIh’G N-ITH CONCEi?JTR.kTF,D MASS-Concduded

i____.—; I [ I

w-f 1——
EIfi C

o ‘o.%’%–;.1 2.35 116 “–.03 1A 3+ 0.46i
15.31 .–43 2.53 14.7 .51 14. 7+ 0.51i 14. 53+ o.547i
412 ;; 7 LOO ~8 .25
0

Ik 8+ 0.83i
0 0

(d) Fourth cycle

6 I 7 I 8 9 I 10 11 I 12

I I II I I

ha% 1
---

——
EIP C

—.
,.. .

.-—

.—

I I

!0” 0 – 17.68 L 629 3.18 –2. 460 14.50 0.831 0 0
–. 083 –. 0036 – 17.70 L 51L x 33 –L992 13.09 .385 – L 28
—. 304

–. 096 15.4+ o.49i .
–. 0326 – 17.53 .843 3.67 –. 901 9.23 –. 630 –L 58 –. 5s8 15.1+ 0.32i

–. 150 ; 0144 –: 86 470 L 84
15.12 +0.343i

–. 459 4.77 –. 278 –2.25 –. 267
~o o“

15.1+ 0.33i
o 0 0 0 0 0

t I .-...—.

~ = 163.9 radians per second; u-=0.030; ~= 390 feet per second

272483-S~



T:iBLE 8.—COMPUTATION OF TRUE SECOND MODE FOR k= CI.1443 FOR WING WITH CONCENTRATED MASS

[
~lexural functions aro in tarma of b; twsional functions are in radians; @ =F1,c=8.65– 1.600i

1

*

-uStation

1 (A)
2
3
;“

I

,,

F1Station 1

rl

1 (B)
p,
3
4

-5.

.—

‘/
/- I —e 1
<

6 4 3 2 1
station

Flexure

1“ ,2 “

8 L

,,,, ●

✎

!.,
<

Torsion ~

I
“1

1 1 1 ‘ II

I “2, ‘1 3 I 4
t’ I ! I II

“#blu(~ -1-** 11(4) = ‘
+m+ i#lIFJs(#q14+i#lJ .

!

““”H” 1

‘**(D? + *ZE3 #4isl-* ,

,.-4,----- k----, _ L -~,772+0,,.M)li ; ‘, :~~$-$:~ 26.36 –”8.67i ~’
-------------- -0.786 +0.294i I ‘ 23.58 -4.06i ‘

., -------------- ! –0.816+0.04% 16.94%7i 16.12–4.5%
-------------- –o.409+o.026i &71~2.36i 8.30G 2.33i
-------------- 0

.

‘1 “ “1 ‘
;!:”

1

,i
i. . ,,. ,
.

:, ‘,,

,,, . ,,,,,. , .$”

,,,
,“: !.,,,,

,,,,,,,

1,

.,

.



TABLE 0.-(,!Ohl I?UTAT,1ON OF TRUE THIRD MODE FOR k==O, 1443 FOR WINL; WITH CON’t’l~:NI’RJ\ ’l’lHJ MASS

cl 1= F== 0,940 -0.3 I3il[ Flcxursl fulmtiOnrn me in l,ernuj of b; I,Orsimml funcl ions am inrdimm. ,$ - ‘ ‘F1’= ‘6”07- “m’i;a -
/1
/i ‘- ‘-”l---.--._, . .. .. J_. –—.J

2 1

.Flexure
—-. .—-, _

2
I

3 ~“4
I

5

.—.

1

,.. . —.—,..___ .

10

HLfblion

Iim+ithf

I
-3tL2-6,i% @lmx9J ,0” 0
. . . . . . . . . . . 11.2m13.23i -6,66+0.644 13,6- 0,08i
. . . . . . . . . -. 3,80 -i-4,66i –4.87+1.Olii 14,7 -1-o,Gli
. . . . . . . . . . . 1.06-1- l,28i –l,Oli-0,42i 6,8$ 0,25i
. . . . . . . . .,. - 0 0

1(A)

:
4
/l

- 4114.8+ t16,24i .. ..--.. -.-.---1 fifL3+12,90i I -561,1+73.WI 50.l+2fl,7i lfJ,9+23,2i
19.3+ 13,84i
13.(1-l-(3.12i
i5,0~ 1.91ii,-‘Se%;‘Egi;*........-...*-..-.........-...-------- -. ..-.

------- ------
--..-.””- ----

---------- . ..$.

~—

TOmioll

I

.

7

Sbation

8’
I

o 10I 1 2“ 3
I

4 $5
~. ,

I

“f3

#llit+i#lll h+ihf

13,W5+l L34i
10,88 +4.34i
4,29+ l,71i
2,31 $CMW,

1 (B)
2
3
4
5

I.. -..-”-- ------- I 14,50 +0,831i ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . I-L.. ._.. _.- . . . . e? _’, 2800MM

0:03+ 2,M3i -4:58 ~O:588i
4,64~ l,25i – 2,2hi 0,267i

-0,227- 0.089i
-o,208-o,l18i
-0,162 -O.164i
-0,08110.0SIi

. . . . . . ..- .

. . . . . . . . ..-

. --.....”..

------- ----

. ..-”-. -“-

-------- .. -”--- “------ . . ...-..” -----”. ------ . . - ...”---!! . . . . . ----------- .-. ,
- ..----”.- ---. ” -“----- ------- ------- “-----._......---------------......
“------------ -- -. .”----- --.”. “-------- . . . . --------- .“”------------......

I I I 1
--------- -------- - ..--.!--- .“- . . ..- ----..-”- . . . . . . . . . .. F.-

1----:-------:-

. .

,

.

i

. ., ,.

‘, ~,
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